Skip to main content
Log in

Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The focus of this work has been to study how high pressure defibrillation and chemical purification affect the hemp fiber morphology from micro to nanoscale. Microscopy techniques, chemical analysis and X-ray diffraction were used to study the structure and properties of the prepared micro and nanofibers. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of hemp fibers. The nanofibers are bundles of cellulose fibers of widths ranging between 30 and 100 nm and estimated lengths of several micrometers. The chemical analysis showed that selective chemical treatments increased the α-cellulose content of hemp nanofibers from 75 to 94%. Fourier transform infrared spectroscopy (FTIR) study showed that the pectins were partially removed during the individualization treatments. X-ray analysis showed that the relative crystallinity of the studied fibers increased after each stage of chemical and mechanical treatments. It was also observed that the hemp nanofibers had an increased crystallinity of 71 from 57% of untreated hemp fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhatnagar, A., Sain, M.: Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24, 1259–1268 (2005)

    Article  CAS  Google Scholar 

  2. Chakraborty, A., Sain, M., Kortschot, M.: Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1), 53–58 (2006)

    Article  CAS  Google Scholar 

  3. Eichhorn, S.J., Baillie, C.A., Zafereiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hughes, M., Hill, C., Rials, T.G., Wild, P.M.: Review-current international research into cellulosic fibres and composites. J. Mater. Sci. 36, 2107–2131 (2001)

    Article  CAS  Google Scholar 

  4. Chakraborty, A., Sain, M., Kortschot, M.: Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1), 102–107 (2005)

    Article  CAS  Google Scholar 

  5. Nakagaito, A.N., Yano, H.: The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl. Phys., A 78, 547–552 (2004)

    Article  CAS  Google Scholar 

  6. Nakagaito, A.N., Yano, H.: Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl. Phys., A 80, 155–159 (2005)

    Article  CAS  Google Scholar 

  7. Sain, M., Bhatnagar, A.: Manufacturing of nanofibrils from natural fibres, agro based fibres and root fibres. CA Patent Appl. 2,437,616 (2003)

  8. Hepworth, D.G., Bruce, D.M.: The mechanical properties of a composite of a composite manufactured from non-fibrous vegetable tissue and PVA. Compos., Part A Appl. Sci. Manuf. 31, 283–285 (2000)

    Article  Google Scholar 

  9. Gindl, W., Keckes, J.: Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos. Sci. Technol. 64, 2407–2413 (2004)

    Article  CAS  Google Scholar 

  10. Dinand, E., Chanzy, H., Vignon, M.R.: Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocoll. 13, 275–283 (1999)

    Article  CAS  Google Scholar 

  11. Canadian hemp alliances (2006) http://www.hemptrade.ca/en/public/about-hemp.ihtml. Cited 13 Aug 2006

  12. Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18, 351–363 (1999)

    Article  CAS  Google Scholar 

  13. Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I.: Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66(15), 2776–2784 (2006)

    Article  CAS  Google Scholar 

  14. McCann, M.C., Wells, B., Roberts, K.: Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96(2), 323–334 (1990)

    Google Scholar 

  15. McCann, M.C., Wells, B., Roberts, K.: Complexity in spatial localization and length distribution of plant cell wall matrix polysaccharides. J. Cell Sci. 166, 123–136 (1993)

    Google Scholar 

  16. Clowes, F.A.L., Juniper, B.E.: Plant cell. In: Burnett, J.H., Phil, M.A.D. (eds.) vol. 8, pp. 207–209. Blackwell Scientific Publications, Oxford (1968)

  17. Stamboulis, A., Baillie, C.A., Peijs, T.: Effects of environmental conditions on mechanical and physical properties of flax fibres. Compos., Part A Appl. Sci. Manuf. 32, 1105–1115 (2001)

    Article  Google Scholar 

  18. Dinand, E., Chanzyi, H., Vignon, M.R., Maureaux, A., Vincent, I.: Microfibrillated cellulose and method for preparing a microfibrillated cellulose. US Patent 5,964,983 (1999)

  19. Yoshinaga, F., Tonouchi, N., Watanabe, K.: Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci. Biotechnol. Biochem. 61, 219–224 (1997)

    Article  CAS  Google Scholar 

  20. Krieger, J.: Bacterial cellulose near commercialization. Chem. Eng. News 68, 35–37 (1990)

    Google Scholar 

  21. Bondeson, D., Kvien, I., Oksman, K.: Optimization of the Isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171–180 (2006)

    Article  CAS  Google Scholar 

  22. Wan, W.K., Hutter, J.L., Millon, L., Guhados, G.: Bacterial cellulose and its nanocomposites for biomedical applications. In: Oksman, K., Sain, M. (eds.) Cellulose Nanocomposites, pp. 221–241. Oxford University Press, Washington, DC (2006)

    Google Scholar 

  23. Ishihara, M., Yamanaka, S.: Modified bacterial cellulose. US Patent 6,627,419 (2002)

  24. Oksman, K., Mathew, A.P., Bondeson, D., Kvien, I.: Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Technol. 66(15), 2776–2784 (2006)

    Article  CAS  Google Scholar 

  25. Taniguchi, T., Okamura, K.: New films produced from mircofibrillated natural fibres. Polym. Int. 47, 291–294 (1998)

    Article  CAS  Google Scholar 

  26. Mustată, A.: Factors influencing fiber–fiber friction in the case of bleached flax. Cellul. Chem. Technol. 31, 405–413 (1997)

    Google Scholar 

  27. Kvien, I., Tanem, B.S., Oksman, K.: Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. Biomacromolecules 6, 3160–3165 (2005)

    Article  CAS  Google Scholar 

  28. Kirby, A.R., Gunning, A.P., Waldron, K.W., Morris, V.J., Ng, A.: Visualization of plant cell walls by atomic force microscopy. Biophys. J. 70, 1138–1143 (1996)

    Article  CAS  Google Scholar 

  29. van der Wel, N.N., Putman, C.A.J., van Noort, S.J.T., de Grooth, B.G., Emons, A.M.C.: Atomic force microscopy of pollen grains, cellulose microfibrils, and protoplasts. Protoplasma 194, 29–39 (1996)

    Article  Google Scholar 

  30. Thimm, J.C., Burritt, C.J., Ducker, W.A., Melton, L.D.: Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212, 25–32 (2000)

    Article  CAS  Google Scholar 

  31. Shimbun, S.K.: Senshoku nouhau no rironka [A Theorisation of Dyeing Know-How]. Japan (1985)

  32. Annergren, G., Boman, M., Sandström, P.: Principal of multi-stage bleaching of softwood kraft pulp. In: Proceedings of 1998 international pulp bleaching conference, Helsinki, Finland, 1–5 June (1998)

  33. Sain, M., Bhatnagar, A.: Manufacturing of nano-sized fibers from renewable feedstock. US Patent Appl. 60,512,912 (2004)

  34. Sain, M.: Solid phase dispersion and processing of micro- and nano-cellulosic fibres in plastic phase to manufacture bio-nanocomposites products of commercial interests. CA Patent Appl. 2,559,844 (2006)

  35. Zobel, B.J., Stonecypher, R., Browne, C., Kellison, R.C.: Variation and inheritance of cellulose in southern pines. Tappi 49, 383–387 (1966)

    CAS  Google Scholar 

  36. Stamm, A.J.: Wood and Cellulose Science. Ronald, New York (1964)

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support of this study given by NSERC (Natural Sciences and Engineering Research Council of Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohini Sain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Sain, M. & Oksman, K. Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale. Appl Compos Mater 14, 89–103 (2007). https://doi.org/10.1007/s10443-006-9032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-006-9032-9

Key words

Navigation