Skip to main content
Log in

A review of the traditional pulping methods and the recent improvements in the pulping processes

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract


The demand for paper and pulp-derived products to fulfill consumer needs is increasing considerably globally. This work provides a critical overview of the various traditional pulping methods and describes the recent improvements in pulping processes. A comparison of different pulping techniques has shown that the mechanical pulping process produces high pulp yields per unit volume of wood of poor quality (low strength, bonding, fiber morphology, etc.) as compared to chemical pulping methods. The use of semi-chemical pulping is reported as an effective way of overcoming the disadvantages of the mechanical pulping process. Recent modifications of the pulping processes that have happened in the last decade have been discussed and shown to be driven by the desire to save energy and reduce chemical requirements while maximizing pulp yields and quality. With the emergence of bio-based nanotechnology, post-pretreatment of Kraft and sulfite pulps for making nanocellulose and lignin-containing nanocellulose with improved fiber characteristics of fiber size, crystallinity, chemical composition, and fiber surface functionality has been discussed. Furthermore, challenges and prospects of the improvements in pulping processes are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Laftah WA, Wan Abdul Rahman WA (2016) Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: a review. J Nat Fibers 13:85–102. https://doi.org/10.1080/15440478.2014.984060

    Article  Google Scholar 

  2. Kuusisto I (2004) Trends and developments in the Chinese pulp and paper industry. Presentation prepared for the International forum on investment and finance in China’s forestry sector, Beijing

  3. Kamoga OLM, Byaruhanga JK, Kirabira JB (2013) A review on pulp manufacture from non wood plant materials. Int J Chem Eng Appl 4:144–148. https://doi.org/10.7763/IJCEA.2013.V4.281

    Article  Google Scholar 

  4. Rodríguez A, Moral A, Serrano L, Labidi J, Jiménez L (2008) Rice straw pulp obtained by using various methods. Bioresour Technol 99:2881–2886. https://doi.org/10.1016/j.biortech.2007.06.003

    Article  Google Scholar 

  5. Jiménez L, Rodríguez A, Pérez A, Moral A, Serrano L (2008) Alternative raw materials and pulping process using clean technologies. Ind Crop Prod 28:11–16. https://doi.org/10.1016/j.indcrop.2007.12.005

    Article  Google Scholar 

  6. FAO (2009) State of the world’s forests 2009. FAO, Rome

    Google Scholar 

  7. Mandeep, Kumar Gupta G, Shukla P (2020) Insights into the resources generation from pulp and paper industry wastes: challenges, perspectives and innovations. Bioresour Technol 297:122496

    Article  Google Scholar 

  8. Obidzinski K, Dermawan A (2012) Pulp industry and environment in Indonesia: is there sustainable future? Reg Environ Chang 12:961–966. https://doi.org/10.1007/s10113-012-0353-y

    Article  Google Scholar 

  9. Wang Q, Jahan MS, Liu S, Miao Q, Ni Y (2014) Lignin removal enhancement from prehydrolysis liquor of kraft-based dissolving pulp production by laccase-induced polymerization. Bioresour Technol 164:380–385. https://doi.org/10.1016/j.biortech.2014.05.005

    Article  Google Scholar 

  10. Bajpai P (2011) Biotechnology for pulp and paper processing. Springer US, New York. https://doi.org/10.1007/978-1-4614-1409-4

  11. Das TK, Houtman C (2004) Evaluating chemical-, mechanical-, and bio-pulping processes and their sustainability characterization using life-cycle assessment. Environ Prog 23:347–357. https://doi.org/10.1002/ep.10054

    Article  Google Scholar 

  12. Martín-Sampedro R, Fillat Ú, Ibarra D, Eugenio ME (2015) Towards the improvement of Eucalyptus globulus chemical and mechanical pulping using endophytic fungi. Int Biodeterior Biodegrad 105:120–126. https://doi.org/10.1016/j.ibiod.2015.08.023

    Article  Google Scholar 

  13. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009. https://doi.org/10.1021/am302624t

    Article  Google Scholar 

  14. Rojo E, Peresin MS, Sampson WW, Hoeger IC, Vartiainen J, Laine J, Rojas OJ (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17:1853–1866. https://doi.org/10.1039/c4gc02398f

    Article  Google Scholar 

  15. Verma SR, Dwivedi UN (2014) Lignin genetic engineering for improvement of wood quality: applications in paper and textile industries, fodder and bioenergy production. South African J Bot 91:107–125. https://doi.org/10.1016/j.sajb.2014.01.002

    Article  Google Scholar 

  16. Jia M, Sun M, Li X, Xu X, Wang Y, Shi L, Hu H (2018) A new era of straw-based pulping? Evidence from a carbon metabolism perspective. J Clean Prod 193:327–337. https://doi.org/10.1016/j.jclepro.2018.04.227

    Article  Google Scholar 

  17. Biermann CJ (1996) Handbook of pulping and papermaking, 2nd ed. Elsevier Inc.

  18. Kocurek MJ, Frederick S, Joint Textbook Committee of the Paper Industry (1983) Pulp & Paper Manufacture, 3rd ed. TAPPI

  19. Gullichsen J, Fogelholm CJ, Yhdistys (1999) Chemical pulping, volume 2. Fapet Oy

  20. Stephenson NJ (1950) Pulp and paper manufacture volume 1 - preparation & treatment of wood pulp. Pulp pap pulp mill bleach

  21. Grant I (1958) Cellulose pulp & allied products, 3rd ed. Thomas Reed & Company limited

  22. Passas R (2012) Natural fibres for paper and packaging. In: Handbook of Natural Fibres. Elsevier, pp. 367–400

  23. Koch G (2008) Raw material for pulp. In: Herbert S (ed) Handbook of pulp. Wiley-VCH Verlag GmbH, Weinheim, pp 21–68

    Google Scholar 

  24. Iglesias MC, Gomez-Maldonado D, Via BK et al (2020) Pulping processes and their effects on cellulose fibers and nanofibrillated cellulose properties: a review. For Prod J 70:10–21. https://doi.org/10.13073/FPJ-D-19-00038

    Article  Google Scholar 

  25. Malkov S, Tikka P, Gustafson R et al (2003) Towards complete impregnation of wood chips with aqueous solutions. Part 5: improving uniformity of kraft displacement batch pulping. Pap ja Puu/Paper Timber 85:215–220

    Google Scholar 

  26. Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219. https://doi.org/10.1021/ie9011672

    Article  Google Scholar 

  27. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845. https://doi.org/10.1038/nature07190

    Article  Google Scholar 

  28. Pu Y, Zhang D, Singh PM, Ragauskas AJ (2008) The new forestry biofuels sector. Biofuels Bioprod Biorefin 2:58–73

    Article  Google Scholar 

  29. Mboowa D, Khatri V, Saddler JN (2020) The use of fluorescent protein-tagged carbohydrate-binding modules to evaluate the influence of drying on cellulose accessibility and enzymatic hydrolysis. RSC Adv 10:27152–27160. https://doi.org/10.1039/d0ra05333c

    Article  Google Scholar 

  30. Hallac BB, Sannigrahi P, Pu Y, Ray M, Murphy RJ, Ragauskas AJ (2010) Effect of ethanol organosolv pretreatment on enzymatic hydrolysis of Buddleja davidii stem biomass. Ind Eng Chem Res 49:1467–1472. https://doi.org/10.1021/ie900683q

    Article  Google Scholar 

  31. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228. https://doi.org/10.1016/S1369-5274(03)00056-0

    Article  Google Scholar 

  32. Argyropoulos DS (2001) Wood and cellulosic chemistry. Second Edition, Revised and Expanded Edited by David N.-S. Hon (Clemson University) and Nubuo Shiraishi (Kyoto University). Marcel Dekker: New York and Basel. 2001. vii + 914 pp. $250.00. ISBN 0-8247-0024-4. J Am Chem Soc 123:8880–8881. https://doi.org/10.1021/ja015237p

    Article  Google Scholar 

  33. Kallioinen A (2014) Development of pretreatment technology and enzymatic hydrolysis for biorefineries

  34. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259

    Article  Google Scholar 

  35. Dimmel DR, MacKay JJ, Courchene CE et al (2002) Pulping and bleaching of partially CAD-deficient wood. J Wood Chem Technol 22:235–248. https://doi.org/10.1081/WCT-120016260

    Article  Google Scholar 

  36. Hintz HL (2001) Paper: pulping and bleaching. In: Encyclopedia of Materials: Science and Technology. Elsevier, pp 6707–6711

  37. Sixta H (2006) Chemical pulping. Handbook of pulp. Wiley-VCH Verlag GMbH & Co, KGaA, Weinheim

  38. Smook GA (1989) Handbook for pulp and paper technologists

  39. Mooney CA, Mansfield SD, Touhy MG, Saddler JN (1998) The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresour Technol 64:113–119. https://doi.org/10.1016/S0960-8524(97)00181-8

    Article  Google Scholar 

  40. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions

  41. Lei X, Zhao Y, Li K, Pelletier A (2012) Improved surface properties of CTMP fibers with enzymatic pretreatment of wood chips prior to refining. Cellulose 19:2205–2215. https://doi.org/10.1007/s10570-012-9792-3

    Article  Google Scholar 

  42. Han X, Bi R, Oguzlu H, Takada M, Jiang J, Jiang F, Bao J, Saddler JN (2020) Potential to produce sugars and lignin-containing cellulose nanofibrils from enzymatically hydrolyzed chemi-thermomechanical pulps. ACS Sustain Chem Eng 8:14955–14963. https://doi.org/10.1021/acssuschemeng.0c05183

    Article  Google Scholar 

  43. Gupta GK, Kapoor RK, Shukla P (2020) Advanced techniques for enzymatic and chemical bleaching for pulp and paper industries. In: Microbial Enzymes and Biotechniques. Springer Singapore, pp. 43–56

  44. Wallmo H, Theliander H, Jönsson AS, Wallberg O, Lindgren K (2009) The influence of hemicelluloses during the precipitation of lignin in kraft black liquor. Nord Pulp Pap Res J 24:165–171. https://doi.org/10.3183/NPPRJ-2009-24-02-p165-171

    Article  Google Scholar 

  45. Marinova M, Mateos-Espejel E, Paris J (2010) From kraft mill to forest biorefinery: an energy and water perspective. II. Case study. In: Cellulose Chemistry and Technology. pp 21–26

  46. Mendes CVT, Carvalho MGVS, Baptista CMSG, Rocha JMS, Soares BIG, Sousa GDA (2009) Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept. Food Bioprod Process 87:197–207. https://doi.org/10.1016/j.fbp.2009.06.004

    Article  Google Scholar 

  47. Tran H, Vakkilainnen EK (2012) The Kraft chemical recovery process. TAPPI Kraft Recover Course 1–8. 10.1.1.452.6675

  48. Mboowa D, Quereshi S, Bhattacharjee C, Tonny K, Dutta S (2017) Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India). Energy 123:386–391. https://doi.org/10.1016/j.energy.2017.02.009

    Article  Google Scholar 

  49. Mboowa D, Kabenge I, Banadda N, Kiggundu N (2017) Energy potential of municipal solid waste in Kampala, a case study of Kiteezi Landfill Site. Afr J Environ Waste Manag 4:190–194

    Google Scholar 

  50. Drake M, Noble B, Nicholas K, Isa K, Allan JK (2015) Estimation of methane generation based on anaerobic digestion and mass balance at Kiteezi Landfill, Kampala, Uganda. Afr J Environ Sci Technol 9:741–746. https://doi.org/10.5897/ajest2015.1922

    Article  Google Scholar 

  51. Chylenski P, Forsberg Z, Ståhlberg J, Várnai A, Lersch M, Bengtsson O, Sæbø S, Horn SJ, Eijsink VGH (2017) Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. J Biotechnol 246:16–23. https://doi.org/10.1016/J.JBIOTEC.2017.02.009

    Article  Google Scholar 

  52. Kilulya KF, Msagati TAM, Mamba BB, Ngila JC, Bush T (2012) Study of the fate of lipophilic wood extractives during acid sulphite pulping process by ultrasonic solid-liquid extraction and gas chromatography mass spectrometry. J Wood Chem Technol 32:253–267. https://doi.org/10.1080/02773813.2012.659319

    Article  Google Scholar 

  53. Viikari L, Suurnäkki A, Grönqvist S, et al (2009) Forest products: biotechnology in pulp and paper processing. In: Encyclopedia of Microbiology. Elsevier Inc., pp. 80–94

  54. Kordsachia O, RoBkopf S, Patt R (2004) Production oF spruce dissolving pulp with the prehydrolysis-alkaline sulfite process (PH-ASA). Lenzinger Berichte 83:24–34

    Google Scholar 

  55. Mboowa D, Chandra RP, Hu J, Saddler JN (2020) Substrate characteristics that influence the filter paper assay’s ability to predict the hydrolytic potential of cellulase mixtures. ACS Sustain Chem Eng 8:10521–10528. https://doi.org/10.1021/acssuschemeng.0c02883

    Article  Google Scholar 

  56. Mboowa D (2019) How can we better predict the hydrolytic performance of commercial cellulase enzyme preparations on a range of biomass substrates? MSc Thesis submitted to University of British Columbia

  57. Fink HP, Weigel P, Ganster J, Rihm R, Puls J, Sixta H, Parajo JC (2004) Evaluation of new organosolv dissolving pulps. Part II: structure and NMMO processability of the pulps. Cellulose 11:85–98. https://doi.org/10.1023/B:CELL.0000014779.93590.a0

    Article  Google Scholar 

  58. Vila C, Santos V, Parajó JC (2004) Dissolving pulp from TCF bleached Acetosolv beech pulp. J Chem Technol Biotechnol 79:1098–1104. https://doi.org/10.1002/jctb.1090

    Article  Google Scholar 

  59. Gonzalo A, Bimbela F, Sánchez JL, Labidi J, Marín F, Arauzo J (2017) Evaluation of different agricultural residues as raw materials for pulp and paper production using a semichemical process. J Clean Prod 156:184–193. https://doi.org/10.1016/j.jclepro.2017.04.036

    Article  Google Scholar 

  60. Teixeira DE (2012) Recycled old corrugated container fibers for wood-fiber cement sheets. ISRN For 2012:1–8. https://doi.org/10.5402/2012/923413

    Article  Google Scholar 

  61. Masrol SR, Ibrahim MHI, Adnan S, et al (2016) Characteristics of linerboard and corrugated medium paper made from durian rinds chemi-mechanical pulp. In: MATEC Web of Conferences

  62. Fatehi P, Gao W, Sun Y, Dashtban M (2016) Acidification of prehydrolysis liquor and spent liquor of neutral sulfite semichemical pulping process. Bioresour Technol 218:518–525. https://doi.org/10.1016/j.biortech.2016.06.138

    Article  Google Scholar 

  63. Tarasov D, Leitch M, Fatehi P (2017) Thermal properties of lignocellulosic precipitates from neutral sulfite semichemical pulping process. Fuel Process Technol 158:146–153. https://doi.org/10.1016/j.fuproc.2016.12.017

    Article  Google Scholar 

  64. Cave G, Fatehi P (2015) Separation of lignosulfonate from spent liquor of neutral sulphite semichemical pulping process via surfactant treatment. Sep Purif Technol 151:39–46. https://doi.org/10.1016/j.seppur.2015.07.017

    Article  Google Scholar 

  65. Wedin H (2012) Aspects of extended impregnation kraft cooking for high-yield pulping of hardwood. Thesis Submitted to KTH Royal Institute of Technology for Partial Fulfillment of the Degree of Philosophy in Chemical Science and Engineering

  66. Daud WRW, Wahid KA, Law KN (2013) Cold soda pulping of oil palm empty fruit bunch (OPEFB). BioResources 8:6151–6160. https://doi.org/10.15376/biores.8.4.6151-6160

    Article  Google Scholar 

  67. Mandeep, Gupta GK, Liu H, Shukla P (2019) Pulp and paper industry–based pollutants, their health hazards and environmental risks. Curr Opin Environ Sci Health 12:48–56

    Article  Google Scholar 

  68. Singh G, Kaur S, Khatri M, Arya SK (2019) Biobleaching for pulp and paper industry in India: emerging enzyme technology. Biocatal Agric Biotechnol 17:558–565

    Article  Google Scholar 

  69. Fonseca MI, Fariña JI, Castrillo ML, Rodríguez MD, Nuñez CE, Villalba LL, Zapata PD (2014) Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality. Int Biodeterior Biodegrad 90:29–35. https://doi.org/10.1016/j.ibiod.2013.11.018

    Article  Google Scholar 

  70. Poojary H, Hoskeri A, Kaur A, Mugeraya G (2012) Comparative production of ligninolytic enzymes from novel isolates of Basidiomycetes and their potential to degrade textile dyes. Nat Sci 10:90–96

    Google Scholar 

  71. Behrendt CJ, Blanchette RA, Akhtar M et al (2000) Biomechanical pulping with Phlebiopsis gigantea reduced energy consumption and increased paper strength. TAPPI J 83:65–70

    Google Scholar 

  72. Eugenio ME, Santos M, Carbajo JM et al (2010) Kraft pulp biobleaching using an extracellular enzymatic fluid produced by Pycnoporus sanguineus. Bioresour Technol 101:1866–1870. https://doi.org/10.1016/j.biortech.2009.09.084

    Article  Google Scholar 

  73. Saxena A, Singh Chauhan P (2017) Role of various enzymes for deinking paper: a review. Crit Rev Biotechnol 37:598–612

    Article  Google Scholar 

  74. Nagar S, Jain RK, Thakur VV, Gupta VK (2013) Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. 3 Biotech 3:277–285. https://doi.org/10.1007/s13205-012-0096-y

    Article  Google Scholar 

  75. Valls C, Roncero MB (2009) Using both xylanase and laccase enzymes for pulp bleaching. Bioresour Technol 100:2032–2039. https://doi.org/10.1016/j.biortech.2008.10.009

    Article  Google Scholar 

  76. Bajpai P (2012) Enzymatic pre-bleaching. In: Environmentally Benign Approaches for Pulp Bleaching. pp. 189–223

  77. Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta R, Kuhad RC (2014) Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol 169:96–102. https://doi.org/10.1016/j.biortech.2014.06.066

    Article  Google Scholar 

  78. Huysveld S, De Meester S, Van Linden V et al (2015) Cumulative Overall Resource Efficiency Assessment (COREA) for comparing bio-based products with their fossil-derived counterparts. Resour Conserv Recycl 102:113–127. https://doi.org/10.1016/j.resconrec.2015.06.007

    Article  Google Scholar 

  79. Bos HL, Broeze J (2020) Circular bio-based production systems in the context of current biomass and fossil demand. Biofuels Bioprod Biorefin 14:187–197. https://doi.org/10.1002/bbb.2080

    Article  Google Scholar 

  80. Fiorentino G, Zucaro A, Ulgiati S (2019) Towards an energy efficient chemistry. Switching from fossil to bio-based products in a life cycle perspective. Energy 170:720–729. https://doi.org/10.1016/j.energy.2018.12.206

    Article  Google Scholar 

  81. Manda BMK, Blok K, Patel MK (2012) Innovations in papermaking: an LCA of printing and writing paper from conventional and high yield pulp. Sci Total Environ 439:307–320. https://doi.org/10.1016/j.scitotenv.2012.09.022

    Article  Google Scholar 

  82. Azeez MA (2018) Pulping of non-woody biomass. In: Pulp and Paper Processing. InTech

  83. Khristova P, Kordsachia O, Patt R, Dafaalla S (2006) Alkaline pulping of some eucalypts from Sudan. Bioresour Technol 97:535–544. https://doi.org/10.1016/j.biortech.2005.04.006

    Article  Google Scholar 

  84. Chen Z, Zhang H, He Z et al (2019) Bamboo as an emerging resource for worldwide pulping and papermaking. BioResources 14:3–5. https://doi.org/10.15376/biores.14.1.3-5

    Article  Google Scholar 

  85. Erik D, Jochen B (2013) Biomass as energy source. CRC Press

  86. Inalbon MC, Mussati MC, Zanuttini MA (2009) Experimental and theoretical analysis of the alkali impregnation of eucalyptus wood. Ind Eng Chem Res 48:4791–4795. https://doi.org/10.1021/ie801685a

    Article  Google Scholar 

  87. Asim M (2012) Effects of prehydrolysis prior to kraft cooking on Swedish Spruce Wood. Thesis submitted for partial fulfillment of Master of Science in Chemical Engineering at Karlstads University

  88. Jiang J, Carrillo-Enríquez NC, Oguzlu H, Han X, Bi R, Song M, Saddler JN, Sun RC, Jiang F (2020) High production yield and more thermally stable lignin-containing cellulose nanocrystals isolated using a ternary acidic deep eutectic solvent. ACS Sustain Chem Eng 8:7182–7191. https://doi.org/10.1021/acssuschemeng.0c01724

    Article  Google Scholar 

  89. Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S (2019) Wound dressings: current advances and future directions. J Appl Polym Sci 136:47738. https://doi.org/10.1002/app.47738

    Article  Google Scholar 

  90. Kedzior SA, Gabriel VA, Dubé MA, Cranston ED (2020) Nanocellulose in emulsions and heterogeneous water-based polymer systems: a review. Adv Mater 2002404. https://doi.org/10.1002/adma.202002404

  91. Pakdel AS, Niinivaara E, Cranston ED, Berry RM, Dubé MA (2020) Cellulose nanocrystal (CNC)–latex nanocomposites: effect of CNC hydrophilicity and charge on rheological, mechanical, and adhesive properties. Macromol Rapid Commun. https://doi.org/10.1002/marc.202000448

  92. Lv S, Zhou H, Bai L et al (2020) Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.106451

  93. Chanoca A, de Vries L, Boerjan W (2019) Lignin engineering in forest trees. Front Plant Sci 10:912

    Article  Google Scholar 

  94. Rastogi S, Dwivedi UN (2006) Down-regulation of lignin biosynthesis in transgenic Leucaena leucocephala harboring O-methyltransferase gene. Biotechnol Prog 22:609–616. https://doi.org/10.1021/bp050206+

    Article  Google Scholar 

  95. Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Critical reviews in biochemistry and molecular biology lignin: genetic engineering and impact on pulping lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 384:305–350. https://doi.org/10.1080/10409230390242443

    Article  Google Scholar 

  96. Grabber JH, Hatfield RD, Lu F, Ralph J (2008) Coniferyl ferulate incorporation into lignin enhances the alkaline delignification and enzymatic degradation of cell walls. Biomacromolecules 9:2510–2516. https://doi.org/10.1021/bm800528f

    Article  Google Scholar 

  97. Golmaei M, Kinnarinen T, Jernström E, Häkkinen A (2018) Efficient separation of hazardous trace metals and improvement of the filtration properties of green liquor dregs by a hydrocyclone. J Clean Prod 183:162–171. https://doi.org/10.1016/j.jclepro.2018.02.123

    Article  Google Scholar 

  98. Koumba-yoya G, Stevanovic T (2017) Transformation of sugar maple bark through catalytic organosolv pulping. Catalysts 7:294. https://doi.org/10.3390/catal7100294

    Article  Google Scholar 

  99. Makitalo M, Lu J, Stahre N, et al (2012) Assessment of the effect of aging on green liquor dregs cover for tailings deposits: field investigation. Proc 8th WASCON 1–5

  100. Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Dev Biol Plant 45:306–313

    Article  Google Scholar 

  101. Bhattarai K, Rajasekar S, Dixon RA, Monteros MJ (2018) Agronomic performance and lignin content of HCT down-regulated alfalfa (Medicago sativa L.). Bioenergy Res 11:505–515. https://doi.org/10.1007/s12155-018-9911-6

    Article  Google Scholar 

Download references

Funding

Canadian Queen Elizabeth II Diamond Jubilee Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Drake Mboowa designed and wrote this review article.

Corresponding author

Correspondence to Drake Mboowa.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mboowa, D. A review of the traditional pulping methods and the recent improvements in the pulping processes. Biomass Conv. Bioref. 14, 1–12 (2024). https://doi.org/10.1007/s13399-020-01243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01243-6

Keywords

Navigation