Skip to main content
Log in

Nanofibers from bagasse and rice straw: process optimization and properties

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Nanofibers (NF) were isolated from bleached bagasse and rice straw pulps. The pulps were refined using high-shear ultrafine grinder and then homogenized using high-pressure homogenizer. The efficiency of the used isolation processes was studied by optical microscopy (OM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and testing the tensile properties (wet and dry) of nanopaper sheets made from the nanofibers. In addition, opacity and porosity of nanopaper sheets made after different processing steps were investigated. The microscopy studies showed that the processes used resulted in nanofibers with diameters ranging from 3.5 to 60 nm. The results indicated that main isolation of nanofibers took place during refining using the ultrafine grinding process, while high-pressure homogenization resulted in smaller and more homogeneous size of nanofibers. Nanopaper sheets made from bagasse showed better wet and dry tensile strength properties than those made of rice straw.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresources Technology 99:1664–1671

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sain M (2005) Processing of cellulose nanofibers reinforced composites. J Reinf Plast Compos 24:1259–1268

    Article  CAS  Google Scholar 

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59:102–107

    Article  CAS  Google Scholar 

  • Chen G, Liu G (2008) Electrospun cellulose nanofiber reinforced soybean protein isolate composite film. J Appl Polym Sci 110:641–646

    Article  CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    Article  PubMed  CAS  Google Scholar 

  • English B, Chow P, Bajwa DS (1997) Processing into composites. In: Rowell MR, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, New York, pp 269–297

    Google Scholar 

  • Fengel D, Wegener G (1989) Wood: Chemistry Ultrastructure Reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Hans JS, Rowell JS (1997) Chemical composition of fibers. In: Rowell MR, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, New York, pp 83–134

    Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441

    Article  CAS  Google Scholar 

  • Iwamoto S, Nakagaito AN, Yano H, Nogi M (2005) Optically transparent composites reinforced with plant fibers- based nanofibers. Appl Phys 81:1109–1112

    Article  CAS  Google Scholar 

  • Iwamoto S, Abe K, Yano H (2008) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9:1022–1026

    Article  PubMed  CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68:2103–2106

    Article  CAS  Google Scholar 

  • Kim C-W, Kim D-S, Kang S-Y, Marquez M, Joo YL (2006) Structural studies of electrospun cellulose nanofibers. Polymer 47:5097–5107

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose–artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kulpinski P (2005) Cellulose nanofibers prepared by the N-Methylmorpholine-N-oxide method. J Appl Polym Sci 98:1855–1859

    Article  CAS  Google Scholar 

  • Lönnberg H, Fogelström L, Samir S, Berglund L, Malmström E, Hult A (2008) Surface grafting of microfibrillated cellulose with poly(ε-caprolactone). Synthesis and characterization. Eur Polym J 44:2991–2997

    Article  Google Scholar 

  • López-Rubio A, Lagaron JM, Ankerforsx T, Lindström T, Nordqvist D, Mattozzi A, Hedenqvist MS (2007) Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose. Carbohydr Polym 68:718–727

    Article  Google Scholar 

  • Nakagaito AN, Yano H (2004) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A Mater Sci Process 80:155–159

    Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Cellulose nanopaper structure of high toughness. Biomacromolecules 8:1934–1941

    Article  PubMed  Google Scholar 

  • Rials TG, Wolcott MP (1997) Physical and mechanical properties of Agro-based fibers. In: Rowell MR, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, New York, pp 63–79

    Google Scholar 

  • Samir MA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposites field. Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  • Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8:2976–2978

    Article  PubMed  CAS  Google Scholar 

  • Subramanian R, Knononov A, Kang T, Paltakari J, Paulapura H (2008) Structure and properties of some natural cellulosic fibrils. Bioresources 3:192–203

    Google Scholar 

  • Svagan AJ, Samir MA, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromolecules 8:2556–2563

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi T, Okamura K (1998) New films produced from microfibrillated natural fibres. Polym Int 47:291–294

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp, 37 Proc. Cellul. Conf., 9th, 1982, Part 2, 815–827

  • Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on hemicellulose. Paper Trade J 122:35–43

    CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Young RA (1997) Processing of agro-based resources into pulp and paper. In: Rowell MR, Young RA, Rowell JK (eds) Paper and composites from agro-based resources. CRC Lewis Publishers, New York, pp 137–245

    Google Scholar 

  • Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from natural materials. Appl Phys Lett 90:073112

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank SIDA for the financial support of the collaboration between Luleå University of Technology, Sweden and National Research Center, Dokki, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Oksman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, M.L., Mathew, A.P., Hassan, E.A. et al. Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci Technol 46, 193–205 (2012). https://doi.org/10.1007/s00226-010-0373-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-010-0373-z

Keywords

Navigation