Skip to main content
Log in

Biofungicide utilizations of antifungal proteins of filamentous ascomycetes: current and foreseeable future developments

  • Review
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Today’s dearth of effective antimicrobial agents can be overcome by the use of antimicrobial proteins, which are produced naturally by a wide range of organisms including microorganisms, plants and mammals. These small basic proteins are highly stable, easy to manufacture on a large scale, and any resistance against them develops only rarely. These proteins are therefore good candidates for the treatment and prevention of various fungal infections. Importantly, these protein-based antimycotics can even be expressed heterologously in suitable organisms and can be used for various agricultural purposes in the future including biocontrol applications. In this review, we summarize today’s knowledge on the sources, structures, large-scale productions, direct surface applications as well as on the heterologous expressions in host plants of the small molecular mass antifungal proteins produced by filamentous fungi. Future developments foreseeable in this promising area of antifungal protein research are also presented and discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta R, Rodríguez-Martín A, Martín A, Núñez F, Asensio MA (2009) Selection of antifungal protein-producing molds from dry-cured meat products. Int J Food Microbiol 135:39–46

    Article  CAS  PubMed  Google Scholar 

  • Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IE, Madeo F, Santos R, Cammue BP, Thevissen K (2009) The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett 583:2513–2516

    Article  CAS  PubMed  Google Scholar 

  • Alem D, Díaz-Dellavalle P, Leoni C, De-Simone SG, Correa A, Oppezzo P, Rizza MD (2014) In search of topical agricultural biofungicides: properties of the recombinant antimicrobial peptide TrxAq-AMP obtained from Amaranthus quitensis. J Microb Biochem Technol 6:268–273

    CAS  Google Scholar 

  • Barakat H (2014) Bio-control of Alternaria alternata during banana storage by purified AFP using isoelectric focusing technique. Food Nutr Sci 5:1482–1495

    Article  CAS  Google Scholar 

  • Barakat H, Spielvogel A, Hassan M, El-Desouky A, El-Mansy H, Rath F, Meyer V, Stahl U (2010) The antifungal protein AFP from Aspergillus giganteus prevents secondary growth of different Fusarium species on barley. Appl Microbiol Biotechnol 87:617–624

    Article  CAS  PubMed  Google Scholar 

  • Barakat H, Hassan M, El-Desouky AI, Stahl U, El-Mansy H (2012) The antifungal protein AFP from Aspergillus giganteus prevents Alternaria spoilage on tomato and mango fruits during storage. The 1st International Conference on Biotechnology Applications in Agriculture, Benha University, Moshtohor and Hurghada, 18-22 February, 2012, pp 29–38

  • Barna B, Leiter É, Hegedűs N, Bíró T, Pócsi I (2008) Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. J Basic Microbiol 48:516–520

    Article  CAS  PubMed  Google Scholar 

  • Batta G, Barna T, Gáspári Z, Sándor S, Kövér KE, Binder U, Sarg B, Kaiserer L, Chhillar AK, Eigentler A, Leiter É, Hegedüs N, Pócsi I, Lindner H, Marx F (2009) Functional aspects of the solution structure and dynamics of PAF–a highly-stable antifungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder U, Oberparleiter C, Meyer V, Marx F (2010a) The antifungal protein PAF interferes with PKC/MPK and cAMP/PKA signalling of Aspergillus nidulans. Mol Microbiol 75:294–307

    Article  CAS  PubMed  Google Scholar 

  • Binder U, Chu M, Read ND, Marx F (2010b) The antifungal activity of the Penicillium chrysogenum protein PAF disrupts calcium homeostasis in Neurospora crassa. Eukaryot Cell 9:1374–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder U, Bencina M, Eigentler A, Meyer V, Marx F (2011) The Aspergillus giganteus antifungal protein AFPNN5353 activates the cell wall integrity pathway and perturbs calcium homeostasis. BMC Microbiol 11:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binder U, Benčina M, Fizil Á, Batta G, Chhillar AK, Marx F (2015) Protein kinase A signaling and calcium ions are major players in PAF mediated toxicity against Aspergillus niger. FEBS Lett 589:1266–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Olivas R, Bruix M, Santoro J, Lacadena J, Martinez del Pozo A, Gavilanes JG, Rico M (1995) NMR solution structure of the antifungal protein from Aspergillus giganteus: evidence for cysteine pairing isomerism. Biochemistry 34:3009–3021

    Article  CAS  PubMed  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc B 366:1987–1998

    Article  Google Scholar 

  • Chen Z, Ao J, Yang W, Jiao L, Zheng T, Chen X (2013) Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment. Appl Microbiol Biotechnol 97:10381–10390

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Peñas G, Eritja R, Tharreau D, del Pozo AM, Messeguer J, San Segundo B (2004) Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 54:245–259

    Article  CAS  PubMed  Google Scholar 

  • Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158

    Article  PubMed  Google Scholar 

  • Cools HJ, Hammond-Kosack KE (2013) Exploitation of genomics in fungicide research: current status and future perspectives. Mol Plant Pathol 14:197–210

    Article  PubMed  Google Scholar 

  • da Costa JP, Cova M, Ferreira R, Vitorino R (2015) Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol 99:2023–2040

    Article  PubMed  CAS  Google Scholar 

  • de Coninck B, Cammue BPA, Thevissen K (2013) Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fung Biol Rev 26:109–120

    Article  Google Scholar 

  • de Souza Cândido E, de Silva Cardoso MH, Sousa DA, Viana JC, de Oliveira-Júnior NG, Miranda V, Franco OL (2014) The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 55:65–78

    Article  CAS  Google Scholar 

  • Delgado J, Acosta R, Rodríguez-Martín A, Bermúdez E, Núñez F, Asensio MA (2015) Growth inhibition and stability of PgAFP from Penicillium chrysogenum against fungi common on dry-ripened meat products. Int J Food Microbiol 205:23–29

    Article  CAS  PubMed  Google Scholar 

  • Ding MZ, Lu H, Cheng JS, Chen Y, Jiang J, Qiao B, Li BZ, Yuan YJ (2012) Comparative metabolomic study of Penicillium chrysogenum during pilot and industrial penicillin fermentations. Appl Biochem Biotechnol 168:1223–1238

    Article  CAS  PubMed  Google Scholar 

  • Dutta S (2015) Biopesticides: an ecofriendly approach for pest control. World J Pharm Pharm Sci 6:250–265

    Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194

    Article  CAS  PubMed  Google Scholar 

  • Galgóczy L, Virágh M, Kovács L, Tóth B, Papp T, Vágvölgyi C (2013) Antifungal peptides homologous to the Penicillium chrysogenum antifungal protein (PAF) are widespread among Fusaria. Peptides 39:131–137

    Article  PubMed  CAS  Google Scholar 

  • Garrigues S, Gandía M, Marcos JF (2016) Occurrence and function of fungal antifungal proteins: a case study of the citrus postharvest pathogen Penicillium digitatum. Appl Microbiol Biotechnol 100:2243–2256

    Article  CAS  PubMed  Google Scholar 

  • Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324

    Article  CAS  PubMed  Google Scholar 

  • Glare TR (2015) Types of biopesticides. In: Leo Nollet ML, Rathore HS (eds) Biopesticides handbook, vol 2. CRC Press, New York, pp 7–25

    Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Gognies S, Belarbi A, Barka EA (2001) Saccharomyces cerevisiae, a potential pathogen towards grapevine, Vitis vinifera. FEMS Microbiol Ecol 37:143–150

    Article  CAS  Google Scholar 

  • Goyal RK, Mattoo AK (2016) Plant antimicrobial peptides. In: Epand RM (ed) Host defense peptides and their potential as therapeutic agents, 1st edn. Springer, Switzerland, pp 111–136

    Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Hagen S, Marx F, Ram AF, Meyer V (2007) The antifungal protein AFP from Aspergillus giganteus inhibits chitin synthesis in sensitive fungi. Appl Environ Microbiol 73:2128–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajji M, Jellouli K, Hmidet N, Balti R, Sellami-Kamoun A, Nasri M (2010) A highly thermostable antimicrobial peptide from Aspergillus clavatus ES1: biochemical and molecular characterization. J Ind Microbiol Biotechnol 37:805–813

    Article  CAS  PubMed  Google Scholar 

  • Hao JJ, Xu Y, Geng CD, Liu WY, Wang Ed, Gong ZZ, Ulbrich N (1998) Purification of α-sarcin and an antifungal protein from Aspergillus giganteus by blue sepharose CL-6B affinity chromatography. Protein Expr Purif 14:295–301

    Article  CAS  PubMed  Google Scholar 

  • Hegedűs N, Marx F (2013) Antifungal proteins: more than antimicrobials? Fungal Biol Rev 26:132–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Hegedűs N, Leiter É, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch L, Haas H, Yu JH, Pócsi I (2011) The small molecular mass antifungal protein of Penicillium chrysogenum–a mechanism of action oriented review. J Basic Microbiol 51:561–571

    Article  PubMed  CAS  Google Scholar 

  • Holaskova E, Galuszka P, Frebort I, Oz MT (2015) Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 33:1005–1023

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Pereira IB, Almeida MS, Roberts DP, Wisniewski A, Kurtenbach E (2008) Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide. Postharvest Biol Technol 47:218–225

    Article  CAS  Google Scholar 

  • Jones RW, Prusky D (2002) Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology 92:33–37

    Article  CAS  PubMed  Google Scholar 

  • Junaid JM, Dar ND, Bhat TA, Bhat AH, Bhat MA (2013) Commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1:39–57

    Google Scholar 

  • Kaiserer L, Oberparleiter C, Weiler-Görz R, Burgstaller W, Leiter É, Marx F (2003) Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180:204–210

    Article  CAS  PubMed  Google Scholar 

  • Kang HK, Seo CH, Park Y (2015) Marine peptides and their anti-infective activities. Mar Drugs 13:618–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaur J, Thokala M, Robert-Seilaniantz A, Zhao P, Peyret H, Berg H, Pandey S, Jones J, Shah D (2012) Subcellular targeting of an evolutionarily conserved plant defensin MtDef4.2 determines the outcome of plant-pathogen interaction in transgenic Arabidopsis. Mol Plant Pathol 13:1032–1046

    Article  CAS  PubMed  Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  • Kong K, Ntui VO, Makabe S, Khan RS, Mii M, Nakamura I (2014) Transgenic tobacco and tomato plants expressing wasabi defensin genes driven by root-specific LjNRT2 and AtNRT2.1 promoters confer resistance against Fusarium oxysporum. Plant Biotechnol 31:89–96

    Article  CAS  Google Scholar 

  • Kong Q, Liang Z, Xiong J, Li H, Ren X (2016) Overexpression of the bivalent antibacterial peptide genes in Pichia pastoris delays sour rot in citrus fruit and induces Geotrichum citri-aurantii cell apoptosis. Food Biotechnol 30:79–97

    Article  CAS  Google Scholar 

  • Kovács L, Virágh M, Takó M, Papp T, Vágvölgyi C, Galgóczy L (2011) Isolation and characterization of Neosartorya fischeri antifungal protein (NFAP). Peptides 32:1724–1731

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Kaushik N (2012) Metabolites of endophytic fungi as novel source of biofungicide: a review. Phytochem Rev 11:507–522

    Article  CAS  Google Scholar 

  • Lacadena J, Martínez del Pozo A, Gasset M, Patiño B, Campos-Olivas R, Vázquez C, Martínez-Ruiz A, Mancheño JM, Oñaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324:273–281

    Article  CAS  PubMed  Google Scholar 

  • Lee GD, Shin SY, Maeng CY, Jin ZZ, Kim KL, Hahm KS (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263:646–651

    Article  CAS  Google Scholar 

  • Leiter É, Szappanos H, Oberparleiter C, Kaiserer L, Csernoch L, Pusztahelyi T, Emri T, Pócsi I, Salvenmoser W, Marx F (2005) Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother 49:2445–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Lawrence CB, Xing H-Y, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635–639

    Article  CAS  PubMed  Google Scholar 

  • Li HP, Zhang JB, Shi RP, Huang T, Fischer R, Liao YC (2008) Engineering Fusarium head blight resistance in wheat by expression of a fusion protein containing a Fusarium-specific antibody and an antifungal peptide. Mol Plant Microbe Interact 21:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Liu RS, Huang H, Yang Q, Liu WY (2002) Purification of α-sarcin and an antifungal protein from mold (Aspergillus giganteus) by chitin affinity chromatography. Protein Expr Purif 25:50–58

    Article  CAS  PubMed  Google Scholar 

  • López-García B, Moreno AB, San Segundo B, De los Ríos V, Manning JM, Gavilanes JG, Martínez-del-Pozo A (2010) Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expr Purif 70:206–210

    Article  PubMed  CAS  Google Scholar 

  • Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374

    Article  PubMed  CAS  Google Scholar 

  • Martín JF, Casqueiro J, Kosalková K, Marcos AT, Gutiérrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie van Leeuwenhoek 75:21–31

    Article  PubMed  Google Scholar 

  • Martínez Del Pozo A, Lacadena V, Mancheno JM, Olmo N, Onaderra M, Gavilanes JG (2002) The antifungal protein AFP of Aspergillus giganteus is an oligonucleotide/oligosaccharide binding (OB) fold-containing protein that produces condensation of DNA. J Biol Chem 277:46179–46183

    Article  PubMed  CAS  Google Scholar 

  • Martín-Urdiroz M, Martínez-Rocha AL, Di Pietro A, Martínez-del-Pozo A, Roncero MI (2009) Differential toxicity of antifungal protein AFP against mutants of Fusarium oxysporum. Int Microbiol 12:115–121

    PubMed  Google Scholar 

  • Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171

    Article  CAS  PubMed  Google Scholar 

  • Marx F, Salvenmoser W, Kaiserer L, Graessle S, Weiler-Görz R, Zadra I, Oberparleiter C (2005) Proper folding of the antifungal protein PAF is required for optimal activity. Res Microbiol 156:35–46

    Article  CAS  PubMed  Google Scholar 

  • McIntyre M, Berry DR, McNeil B (2000) Role of proteases in autolysis of Penicillium chrysogenum chemostat cultures in response to nutrient depletion. Appl Microbiol Biotechnol 53:235–242

    Article  CAS  PubMed  Google Scholar 

  • McNeil B, Berry DR, Harvey LM, Grant A, White S (1998) Measurement of autolysis in submerged batch cultures of Penicillium chrysogenum. Biotechnol Bioeng 57:297–305

    Article  CAS  PubMed  Google Scholar 

  • Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28

    Article  CAS  PubMed  Google Scholar 

  • Montesinos E (2007) Antimicrobial peptides and plant disease control. FEMS Microbiol Lett 270:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moreno AB, Del Pozo AM, Borja M, Segundo BS (2003) Activity of the antifungal protein from Aspergillus giganteus against Botrytis cinerea. Phytopathology 93:1344–1353

    Article  CAS  PubMed  Google Scholar 

  • Moreno AB, Peñas G, Rufat M, Bravo JM, Estopà M, Messeguer J, San Segundo B (2005) Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Mol Plant Microbe Interact 18:960–972

    Article  CAS  PubMed  Google Scholar 

  • Moreno AB, Martínez Del Pozo A, San Segundo B (2006) Biotechnologically relevant enzymes and proteins. Antifungal mechanism of the Aspergillus giganteus AFP against the rice blast fungus Magnaporthe grisea. Appl Microbiol Biotechnol 72:883–895

    Article  CAS  PubMed  Google Scholar 

  • Nakaya K, Omata K, Okahashi I, Nakamura Y, Kolekenbrock H, Ulbrich N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38

    Article  CAS  PubMed  Google Scholar 

  • Newbury HJ (2009) Plant molecular breeding. Blackwell, Oxford

    Google Scholar 

  • Nunes CA (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196

    Article  Google Scholar 

  • Oldach KH, Becker D, Lörz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant Microbe Interact 14:832–838

    Article  CAS  PubMed  Google Scholar 

  • Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162–1166

    Article  CAS  PubMed  Google Scholar 

  • Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V (2011) Survival strategies of yeast and filamentous fungi against the antifungal protein AFP. J Biol Chem 286:13859–13868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palencia ER, Hinton DM, Bacon CW (2010) The black Aspergillus species of maize and peanuts and their potential for mycotoxin production. Toxins 2:399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Kong Q, Wang H, Yu T, Tang YJ, Zhou WW, Zheng X (2012) Control of apple blue mold by Pichia pastoris recombinant strains. Bioprocess Biosyst Eng 35:761–767

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Martinez MI, Horn N, Dodd HM (2003) Heterologous production of bacteriocins by lactic acid bacteria. Int J Food Microbiol 80:101–116

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31:541–547

    Article  PubMed  CAS  Google Scholar 

  • Seiber JN, Coats J, Duke SO, Gross AD (2014) Biopesticides: state of the art and future opportunities. J Agric Food Chem 62:11613–11619

    Article  CAS  PubMed  Google Scholar 

  • Seibold M, Wolschann P, Bodevin S, Olsen O (2011) Properties of the bubble protein, a defensin and an abundant component of a fungal exudate. Peptides 32:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Skouri-Gargouri H, Gargouri A (2008) First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus. Peptides 29:1871–1877

    Article  CAS  PubMed  Google Scholar 

  • Skouri-Gargouri H, Ben Ali M, Gargouri A (2009) Molecular cloning, structural analysis and modelling of the AcAFP antifungal peptide from Aspergillus clavatus. Peptides 30:1798–1804

    Article  CAS  PubMed  Google Scholar 

  • Szappanos H, Szigeti GP, Pál B, Rusznák Z, Szűcs G, Rajnavölgyi É, Balla J, Balla G, Nagy E, Leiter É, Pócsi I, Marx F, Csernoch L (2005) The Penicillium chrysogenum-derived antifungal peptide shows no toxic effects on mammalian cells in the intended therapeutic concentration. Naunyn Schmiedebergs Arch Pharmacol 371:122–132

    Article  CAS  PubMed  Google Scholar 

  • Szappanos H, Szigeti GP, Pál B, Rusznák Z, Szűcs G, Rajnavölgyi É, Balla J, Balla G, Nagy E, Leiter É, Pócsi I, Hagen S, Meyer V, Csernoch L (2006) The antifungal protein AFP secreted by Aspergillus giganteus does not cause detrimental effects on certain mammalian cells. Peptides 27:1717–1725

    Article  CAS  PubMed  Google Scholar 

  • Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theis T, Marx F, Salvenmoser W, Stahl U, Meyer V (2005) New insights into the target site and mode of action of the antifungal protein of Aspergillus giganteus. Res Microbiol 156:47–56

    Article  CAS  PubMed  Google Scholar 

  • Tóth L, Kele Z, Borics A, Nagy LG, Váradi G, Virágh M, Takó M, Vágvölgyi C, Galgóczy L (2016) NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization. AMB Express 6:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsitsigiannis DI, Dimakopoulou M, Antoniou PP, Tjamos EC (2012) Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol Mediterr 51:158–174

    CAS  Google Scholar 

  • Tu CY, Chen YP, Yu MC, Hwang IE, Wu DY, Liaw LL (2016) Characterization and expression of the antifungal protein from Monascus pilosus and its distribution among various Monascus species. J Biosci Bioeng 122:27–33

    Article  CAS  PubMed  Google Scholar 

  • Turrini A, Sbrana C, Nuti MP, Pietrangeli BM, Giovannetti M (2004a) Development of a model system to assess the impact of genetically modified corn and aubergine plants on arbuscular mycorrhizal fungi. Plant Soil 266:69–75

    Article  CAS  Google Scholar 

  • Turrini A, Sbrana C, Pitto L, Ruffini Castiglione M, Giorgetti L, Briganti R, Bracci T, Evangelista M, Nuti MP, Giovannetti M (2004b) The antifungal Dm-AMP1 protein from Dahlia merckii expressed in Solanum melongena is released in root exudates and differentially affects pathogenic fungi and mycorrhizal symbiosis. New Phytol 163:393–403

    Article  CAS  Google Scholar 

  • van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaitre B, Alunni B, Bourge M, Kucho KI, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • van der Weerden NL, Bleackley MR, Anderson MA (2013) Properties and mechanisms of action of naturally occurring antifungal peptides. Cell Mol Life Sci 70:3545–3570

    Article  PubMed  CAS  Google Scholar 

  • Váradi G, Tóth GK, Kele Z, Galgóczy L, Fizil Á, Batta G (2013) Synthesis of PAF, an antifungal protein from P. chrysogenum, by native chemical ligation: native disulfide pattern and fold obtained upon oxidative refolding. Chemistry 19:12684–12692

    Article  PubMed  CAS  Google Scholar 

  • Vila L, Lacadena V, Fontanet P, Martinez del Pozo A, San Segundo B (2001) A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol Plant Microbe Interact 14:1327–1331

    Article  CAS  PubMed  Google Scholar 

  • Virágh M, Vörös D, Kele Z, Kovács L, Fizil Á, Lakatos G, Maróti G, Batta G, Vágvölgyi C, Galgóczy L (2014) Production of a defensin-like antifungal protein NFAP from Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal isolates from human infections. Protein Expr Purif 94:79–84

    Article  PubMed  CAS  Google Scholar 

  • Virágh M, Marton A, Vizler C, Tóth L, Vágvölgyi C, Marx F, Galgóczy L (2015) Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein. Protein Cell 6:518–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vriens K, Cammue BPA, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303

    Article  PubMed  CAS  Google Scholar 

  • Waghu FH, Gopi L, Barai RS, Ramteke P, Nizami B, Idicula-Thomas S (2014) CAMP: collection of sequences and structures of antimicrobial peptides. Nucleic Acids Res 42:D1154–D1158

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44:D1087–D1093

    Article  PubMed  Google Scholar 

  • Wen C, Guo W, Chen X (2014) Purification and identification of a novel antifungal protein secreted by Penicillium citrinum from the Southwest Indian Ocean. J Microbiol Biotechnol 24:1337–1345

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, He Y, Ge X (2011) Functional characterization of the recombinant antimicrobial peptide Trx-Ace-AMP1 and its application on the control of tomato early blight disease. Appl Microbiol Biotechnol 90:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ (2015) Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 99:4961–4981

    Article  CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptide of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhu S (2008) Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Mol Immunol 45:828–838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. Mattia Joan Plubell for editing the English of the paper. This work was financed by the Hungarian Scientific Research Fund (OTKA K100464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Leiter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Jesus Mercado Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiter, É., Gáll, T., Csernoch, L. et al. Biofungicide utilizations of antifungal proteins of filamentous ascomycetes: current and foreseeable future developments. BioControl 62, 125–138 (2017). https://doi.org/10.1007/s10526-016-9781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9781-9

Keywords

Navigation