Skip to main content
Log in

Comparative Metabolomic Study of Penicillium chrysogenum During Pilot and Industrial Penicillin Fermentations

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Comparative metabolomics was carried out to investigate the metabolic differences of Penicillium chrysogenum in the pilot and industrial fermentations that resulted from the scale-up. By principal component analysis, the early stages of two fermentation processes were clearly distinguished, whereas the middle and final stages were clustered together. It indicated that the different metabolisms of cells in the pilot and industrial fermentations mainly existed during the early stage. Furthermore, the levels of polyamines, polyols, glycolysis, and tricarboxylic acid cycle intermediates, which changed more dramatically during the pilot process, were all higher in the pilot than in the industrial fermentation during the early stage. This indicated that the fermentation conditions of the early stage should be the focus of process management which is aimed at increasing penicillin production. Additionally, the comparative accumulations of the precursors of penicillin (valine, cysteine, and lysine) revealed that penicillin biosynthesis in the industrial process was more affected during the middle stage of fermentation. These findings provide new insights to further regulate the industrial process and improve the production of penicillin. More generally, this study attempts to address the scarcity of studies that contrast the metabolic outcomes between commercial- and pilot-scale conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fleming, A. (1929). On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenza. British Journal of Experimental Pathology, 10, 226–236.

    CAS  Google Scholar 

  2. Nielsen, J. (1997) Physiological engineering aspects of Penicillium chrysogenum. World Scientific, Singapore. 139 p.

  3. Nasution, U., van Gulik, W. M., Ras, C., Proell, A., & Heijnen, J. J. (2008). A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum. Metabolic Engineering, 10, 10–23.

    Article  CAS  Google Scholar 

  4. Gunnarsson, N., Eliasson, A., & Nielsen, J. (2004). Control of fluxes towards antibiotics and the role of primary metabolism in production of antibiotics. Advances in Biochemical Engineering/Biotechnology, 88, 137–178.

    Article  CAS  Google Scholar 

  5. Christensen, B., Thykaer, J., & Nielsen, J. (2000). Metabolic characterization of high- and low-yielding strains of Penicillium chrysogenum. Applied Microbiology and Biotechnology, 54, 212–217.

    Article  CAS  Google Scholar 

  6. Charles, M. (1985). Fermentation scale-up: problems and possibilities. Trends in Biotechnology, 3, 134–139.

    Article  CAS  Google Scholar 

  7. Yang, H., & Allen, D. G. (1999). Model-based scale-up strategy for mycelial fermentation processes. Canadian Journal of Chemical Engineering, 77, 844–854.

    Article  CAS  Google Scholar 

  8. Junker, B. H., Hesse, M., Burgess, B., Masurekar, P., Connors, N., & Seeley, A. (2004). Early phase process scale-up challenges for fungal and filamentous bacterial cultures. Applied Biochemistry and Biotechnology, 119, 241–277.

    Article  CAS  Google Scholar 

  9. Smith, J. J., Lilly, M. D., & Fox, R. I. (1990). 1990. Biotechnology and Bioengineering, 35, 1011–1023.

    Article  CAS  Google Scholar 

  10. Jüsten, P., Paul, G. C., Nienow, A. W., & Thomas, C. R. (1998). Dependence of Penicillium chrysogenum growth, morphology, vacuolation, and productivity in fed-batch fermentations on impeller type and agitation intensity. Biotechnology and Bioengineering, 59, 762–775.

    Article  Google Scholar 

  11. Schmidt, F. R. (2005). Optimization and scale up of industrial fermentation processes. Applied Microbiology and Biotechnology, 68, 425–435.

    Article  CAS  Google Scholar 

  12. Makagiansar, H. Y., Ayazi Shamlou, P., Thomas, C. R., & Lilly, M. D. (1993). The influence of mechanical forces on the morphology and penicillin production of Penicillium chrysogenum. Bioprocess and Biosystems Engineering, 9, 83–90.

    CAS  Google Scholar 

  13. Nielsen, J., & Krabben, P. (1995). Hyphal growth and fragmentation of Penicillium chrysogenum in submerged cultures. Biotechnology and Bioengineering, 46, 588–598.

    Article  CAS  Google Scholar 

  14. Paul, G. C., & Thomas, C. R. (1996). A structured model for hyphal differentiation and penicillin production using Penicillium chrysogenum. Biotechnology and Bioengineering, 51, 558–572.

    Article  CAS  Google Scholar 

  15. Rokem, J. S., Lantz, A. E., & Nielsen, J. (2007). Systems biology of antibiotic production by microorganisms. Natural Product Reports, 24, 1262–1287.

    Article  CAS  Google Scholar 

  16. Cao, Y. X., Qiao, B., Lu, H., Chen, Y., & Yuan, Y. J. (2011). Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Applied Microbiology and Biotechnology, 89, 1193–1202.

    Article  CAS  Google Scholar 

  17. van Gulik, W. M., Antoniewicz, M. R., De Laat, W. T. A. M., Vinke, J. L., & Heijnen, J. J. (2001). Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnology and Bioengineering, 72, 185–193.

    Article  Google Scholar 

  18. Cheng, J. S., Ding, M. Z., Tian, H. C., & Yuan, Y. J. (2009). Inoculation density-dependent responses and pathway shifts in Saccharomyces cerevisiae. Proteomics, 9, 4704–4713.

    Article  CAS  Google Scholar 

  19. Han, P. P., & Yuan, Y. J. (2009). Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. The FASEB Journal, 23, 623–630.

    Article  CAS  Google Scholar 

  20. Li, B. Z., Cheng, J. S., Qiao, B., & Yuan, Y. J. (2010). Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. Journal of Industrial Microbiology & Biotechnology, 37, 43–55.

    Article  Google Scholar 

  21. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  CAS  Google Scholar 

  22. Christensen, L. H., Mandrup, G., Nielsen, J., & Villadsen, J. (1994). A robust liquid chromatographic method for measurement of medium components during penicillin fermentation. Analytica Chimica Acta, 296, 51–62.

    Article  CAS  Google Scholar 

  23. Ding, M. Z., Li, B. Z., Cheng, J. S., & Yuan, Y. J. (2010). Metabolome analysis of differential responses of diploid and haploid yeast to ethanol stress. OMICS., 14, 553–561.

    Article  CAS  Google Scholar 

  24. Ding, M. Z., Cheng, J. S., Xiao, W. H., Qiao, B., & Yuan, Y. J. (2009). Comparative metabolomic analysis on industrial continuous and batch ethanol fermentation processes by GC–TOF/MS. Metabolomics, 5, 229–238.

    Article  CAS  Google Scholar 

  25. Nasution, U., van Gulik, W. M., Kleijn, R. J., van Winden, W. A., Proell, A., & Heijnen, J. J. (2006). Measurement of intracellular metabolites of primary metabolism and adenine nucleotides in chemostat cultivated Penicillium chrysogenum. Biotechnology and Bioengineering, 94, 159–166.

    Article  CAS  Google Scholar 

  26. Jorgensen, H., Nielsen, J., Villadsen, J., & Mollgaard, H. (1995). Metabolic flux distributions in Penicillium chrysogenum during fed-batch cultivations. Biotechnology and Bioengineering, 46, 117–131.

    Article  CAS  Google Scholar 

  27. van Gulik, W. M., de Laat, W. T., Vinke, J. L., & Heijnen, J. J. (2000). Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnology and Bioengineering, 68, 602–618.

    Article  Google Scholar 

  28. Pirt, S. J., & Righelato, R. C. (1967). Effect of growth rate on the synthesis of penicillin by Penicillium chrysogenum in batch and chemostat cultures. Applied Microbiology, 15, 1284–1290.

    CAS  Google Scholar 

  29. Ding, M. Z., Tian, H. C., Cheng, J. S., & Yuan, Y. J. (2009). Inoculum size-dependent interactive regulation of metabolism and stress response of Saccharomyces cerevisiae revealed by comparative metabolomics. Journal of Biotechnology, 144, 279–286.

    Article  CAS  Google Scholar 

  30. Ding, M. Z., Zhou, X., & Yuan, Y. J. (2010). Metabolome profiling reveals adaptive evolution of Saccharomyces cerevisiae during repeated vacuum fermentations. Metabolomics, 6, 42–55.

    Article  CAS  Google Scholar 

  31. Henriksen, C. M., Christensen, L. H., Nielsen, J., & Villadsen, J. (1996). Growth energetics and metabolic fluxes in continuous cultures of Penicillium chrysogenum. Journal of Biotechnology, 45, 149–164.

    Article  CAS  Google Scholar 

  32. Jennings, D. H. (1984). Polyol metabolism in fungi. Advances in Microbial Physiology, 25, 149–193.

    Article  CAS  Google Scholar 

  33. Adler, L., Pedersen, A., & Tunblad-Johansson, I. (1982). Polyol accumulation by two filamentous fungi grown at different concentrations of NaCl. Plant Physiology, 56, 139–142.

    Article  CAS  Google Scholar 

  34. Taber, W. A., & Tertzakian, G. (1965). Sequential primary and secondary shunt metabolism in Penicillium chrysogenum. Applied and Environmental Microbiology, 13, 590–594.

    CAS  Google Scholar 

  35. Mitsui, K., Igarashi, K., Kakegawa, T., & Hirose, S. (1984). Preferential stimulation of the in vivo synthesis of a protein by polyamines in Penicillium chrysogenum: purification and properties of the specific protein. Biochemistry, 23, 2679–2683.

    Article  CAS  Google Scholar 

  36. Tabor, C. W., & Tabor, H. (1985). Polyamines in microorganisms. Microbiological Reviews, 49, 81–99.

    CAS  Google Scholar 

  37. Sekowska, A., Bertin, P., & Danchin, A. (1998). Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Molecular Microbiology, 29, 851–858.

    Article  CAS  Google Scholar 

  38. Flores, H. E., & Galston, A. W. (1982). Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science, 217, 1259–1261.

    Article  CAS  Google Scholar 

  39. Tabor, C. W., & Tabor, H. (1976). 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annual Review of Biochemistry, 45, 285–306.

    Article  CAS  Google Scholar 

  40. Feuerstein, B. G., Pattabiraman, N., & Marton, L. J. (1986). Spermine–DNA interactions: a theoretical study. Proceedings of the National Academy of Sciences of the United States of America, 83, 5948–5952.

    Article  CAS  Google Scholar 

  41. Yuki, M., Grukhin, V., Lee, C. S., & Haworth, I. S. (1996). Spermine binding to GC-rich DNA: experimental and theoretical studies. Archives of Biochemistry and Biophysics, 325, 39–46.

    Article  CAS  Google Scholar 

  42. Park, M. H., Joe, Y. A., Kang, K. R., Lee, Y. B., & Wolf, E. C. (1996). The polyamine-derived amino acid hypusine: its post-translational formation in eIF-5A and its role in cell proliferation. Amino Acids, 10, 109–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the National High-Tech R&D Program (863 Program: 2012AA021204), the National Basic Research Program of China (973 Program: 2011CBA00802), and the National Natural Science Foundation of China (Key Program: 20736006, Major International Joint Research Project: 21020102040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Lu or Ying-Jin Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, MZ., Lu, H., Cheng, JS. et al. Comparative Metabolomic Study of Penicillium chrysogenum During Pilot and Industrial Penicillin Fermentations. Appl Biochem Biotechnol 168, 1223–1238 (2012). https://doi.org/10.1007/s12010-012-9852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9852-z

Keywords

Navigation