Skip to main content

Advertisement

Log in

Plant antifungal proteins and their applications in agriculture

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350

    PubMed  Google Scholar 

  • Acharya K, Pal AK, Gulati A, Kumar S, Singh AK, Ahuja PS (2013) Overexpression of Camellia sinensis thaumatin-like protein, CsTLP in potato confers enhanced resistance to Macrophomina phaseolina and Phytophthora infestans infection. Mol Biotechnol 54(2):609–622

    CAS  PubMed  Google Scholar 

  • Aerts AM, François IE, Meert EM, Li QT, Cammue BP, Thevissen K (2007) The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13(4):243–247

    CAS  PubMed  Google Scholar 

  • Aerts AM, Carmona-Gutierrez D, Lefevre S, Govaert G, François IE, Madeo F, Santos R, Cammue BP, Thevissen K (2009) The antifungal plant defensin RsAFP2 from radish induces apoptosis in a metacaspase independent way in Candida albicans. FEBS Lett 83:2513–2516

    Google Scholar 

  • Agizzio AP, Carvalho AO, Ribeiro SDFF, Machado OL, Alves EW, Okorokov LA, SamaraoS S, Bloch C, Prates MV, Gomes VM (2003) A 2S albumin-homologous protein from passion fruit seeds inhibits the fungal growth and acidification of the medium by Fusarium oxysporum. Arch Biochem Biophys 416(2):188–195

    CAS  PubMed  Google Scholar 

  • Alfred RL, Palombo EA, Panozzo JF, Bhave M (2013) The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action. PLoS ONE 8:e75488

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allen A, Islamovic E, Kaur J, Gold S, Shah D, Smith TJ (2011) Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut. Plant Biotechnol J 9:857–864

    CAS  PubMed  Google Scholar 

  • Almagro L, Ros LG, Belchi-Navarro S, Bru R, Barceló AR, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Expert Bot 60(2):377–390

    CAS  Google Scholar 

  • Almasia NI, Narhirñak V, Hopp HE, Vazquez-Rovere C (2010) Isolation and characterization of the tissue and development-specific potato snakin-1 promoter inducible by temperature and wounding. Electron J Biotechnol 13(5):8–9

    Google Scholar 

  • Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S (2003) Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Expert Bot 54(384):1101–1111

    CAS  Google Scholar 

  • Andersen MD, Jensen A, Robertus JD, Leah R, Skriver K (1997) Heterologous expression and characterization of wildtype and mutant forms of a 26 kDa endochitinase from barley (Hordeum vulgare L.). Biochem J 322:815–822

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anil Kumar S, Hima Kumari P, Shravan Kumar G, Mohanalatha C, Kavi Kishor PB (2015) Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Front Plant Sci 6:163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asano T, Miwa A, Maeda K, Kimura M, Nishiuchi T (2013) The secreted antifungal protein thionin 2.4 in Arabidopsis thaliana suppresses the toxicity of a fungal fruit body lectin from Fusarium graminearum. PLoS Pathog 9(8):e1003581

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balasubramanian V, Vashisht D, Cletus J, Sakthivel N (2012) Plant β-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34(11):1983–1990

    CAS  PubMed  Google Scholar 

  • Barbault F, Landon C, Guenneugues M, Meyer JP, Schott V, Dimarcq JL, Vovelle F (2003) Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus. Biochemistry 42(49):14434–14442

    CAS  PubMed  Google Scholar 

  • Bergmann CW, Ito Y, Singer D, Albersheim P, Darvill AG, Benhamou N, Nuss L, Salvi G, Cervone F, De Lorenzo G (1994) Polygalacturonase-inhibiting protein accumulates in Phaseolus vulgaris L. in response to wounding, elicitors and fungal infection. Plant J 5:625–634

    CAS  PubMed  Google Scholar 

  • Berrocal-Lobo M, Segura A, Moreno M, López G, Garcı́a-Olmedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128(3):951–961

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bezirganoglu I, Hwang SY, Fang TJ, Shaw JF (2013) Transgenic lines of melon (Cucumis melo L. var. makuwa cv. ‘Silver Light’) expressing antifungal protein and chitinase genes exhibit enhanced resistance to fungal pathogens. Plant Cell Tissue Organ Cult (PCTOC) 112(2):227–237

    CAS  Google Scholar 

  • Bhave M, Morris CF (2008) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol 66(3):221–231

    CAS  PubMed  Google Scholar 

  • Bormann C, Baier D, Hörr I, Raps C, Berger J, Jung G, Schwarz H (1999) Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tü901 that interferes with growth polarity. J Bacteriol 181(24):7421–7429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Broekaert WF, Van Parijs JAN, Leyns F, Joos H, Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science (Washington) 245(4922):1100–1102

    CAS  Google Scholar 

  • Broekaert WF, Terras FR, Cammue BP, Osborn RW (1995) Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol 108(4):1353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250

    CAS  PubMed  Google Scholar 

  • Cammue BP, De Bolle MF, Terras FR, Proost P, Van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J Biol Chem 267(4):2228–2233

    CAS  PubMed  Google Scholar 

  • Cândido Ede E, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R, Grossi-de-Sá MF, Franco OL (2011) Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 25(10):3290–3305

    PubMed  Google Scholar 

  • Chan YS, Ng TB (2013) Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. Cell Biochem Biophys 66(3):637–648

    CAS  PubMed  Google Scholar 

  • Charnet P, Molle G, Marion D, Rousset M, Lullien-Pellerin V (2003) Puroindolines form ion channels in biological membranes. Biophys J 84(4):2416–2426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen SC, Liu AR, Wang FH, Ahammed GJ (2009) Combined overexpression of chitinase and defensin genesin transgenic tomato enhances resistance to Botrytis cinerea. Afr J Biotechnol 8(20):5182–5188

    CAS  Google Scholar 

  • Choi HW, Hwang BK (2012) The pepper extracellular peroxidase CaPO2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens. Planta 235(6):1369–1382

    CAS  PubMed  Google Scholar 

  • Chouabe C, Eyraud V, Da Silva P, Rahioui I, Royer C, Soulage C, Bonvallet R, Huss M, Gressent F (2011) New mode of action for a knottin protein bioinsecticide pea albumin 1 subunit b (PA1b) is the first peptidic inhibitor of V-ATPase. J Biol Chem 286(42):36291–36296

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chu KT, Ng TB (2003a) Mollisin, an antifungal protein from the chestnut Castanea mollisima. Planta Med 69(09):809–813

    CAS  PubMed  Google Scholar 

  • Chu KT, Ng TB (2003b) Isolation of a large thaumatin-like antifungal protein from seeds of the Kweilin chestnut Castanopsis chinensis. Biochem Biophys Res Commun 301(2):364–370

    CAS  PubMed  Google Scholar 

  • Chu KT, Ng TB (2005) Purification and characterization of a chitinase-like antifungal protein from black turtle bean with stimulatory effect on nitric oxide production by macrophages. Biol Chem 386(1):19–24

    CAS  PubMed  Google Scholar 

  • Clark SJ, Templeton MD, Sullivan PA (1997) A secreted aspartic proteinase from Glomerella cingulata: purification of the enzyme and molecular cloning of the cDNA. Microbiol 143:1395–1403

    CAS  Google Scholar 

  • Clausen M, Kräuter R, Schachermayr G, Potrykus I, Sautter C (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat Biotechnol 18(4):446–449

    CAS  PubMed  Google Scholar 

  • Clemons KV, Martinez M, Axelsen M, Thiel S, Stevens DA (2011) Efficacy of recombinant human mannose binding lectin alone and in combination with itraconazole against murine Candida albicans vaginitis. Immunol Investig 40(6):553–568

    CAS  Google Scholar 

  • Cletus J, Balasubramanian V, Vashisht D, Sakthivel N (2013) Transgenic expression of plant chitinases to enhance disease resistance. Biotechnol Lett 35(11):1719–1732

    CAS  PubMed  Google Scholar 

  • Cochrane MP, Paterson L, Gould E (2000) Changes in chalazal cell walls and in the peroxidase enzymes of the crease region during grain development in barley. J Exp Bot 51(344):507–520

    CAS  PubMed  Google Scholar 

  • Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC, Lorito M, Giordana B, Pennacchio F, Rao R (2008) The chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res 17(4):557–571

    CAS  PubMed  Google Scholar 

  • Crain RC, Clark RW (1985) Secretion of a nonspecific lipid transfer protein by hepatoma cells in culture. Arch Biochem Biophys 241(1):290–297

    CAS  PubMed  Google Scholar 

  • Das DK, Rahman A (2012) Expression of a rice chitinase gene enhances antifungal response in transgenic litchi (cv. Bedana). Plant Cell Tis Organ Cult 109(2):315–325

    CAS  Google Scholar 

  • Dash C, Ahmad A, Nath D, Rao M (2001) Novel bifunctional inhibitor of xylanase and aspartic protease: implications for inhibition of fungal growth. Antimicrob Agents Chemother 45:2008–2017

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Bernardis F, Arancia S, Tringali G, Greco MC, Ragazzoni E, Calugi C, Trabocchi A, Sandini S, Graziani S, Cauda R, Cassone A, Guarna A, Navarra P (2014) Evaluation of efficacy, pharmacokinetics and tolerability of peptidomimetic aspartic proteinase inhibitors as cream formulation in experimental vaginal candidiasis. J Pharm Pharmacol 66(8):1094–1101

    PubMed  Google Scholar 

  • De Brucker K, Cammue BPA, Thevissen K (2011) Apoptosis-inducing antifungal peptides and proteins. Biochem Soc Trans 39(5):1527–1532

    PubMed  Google Scholar 

  • De Freitas CD, Lopes JL, Beltramini LM, De Oliveira RS, Oliveira JT, Ramos MV (2011) Osmotin from Calotropis procera latex: new insights into structure and antifungal properties. Biochim Biophys Acta 1808(10):2501–2507

    PubMed  Google Scholar 

  • Delattin N, De Brucker K, Craik DJ, Cheneval O, Fröhlich M, Veber M, Girandon L, Davis TR, Weeks AE, Kumamoto CA, Cos P, Coenye T, De Coninck B, Cammue BP, Thevissen K (2014) Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability. Antimicrob Agents Chemother 58(5):2647–2656

    PubMed Central  PubMed  Google Scholar 

  • Dhatwalia VK, Sati OP, Tripathi MK, Kumar A (2009) Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein. World J Agric Sci 5(3):297–300

    CAS  Google Scholar 

  • Di R, Tumer NE (2015) Pokeweed antiviral protein: its cytotoxicity mechanism and applications in plant disease resistance. Toxins (Basel) 7(3):755–772

    CAS  Google Scholar 

  • Dracatos PM, Weerden NL, Carroll KT, Johnson ED, Plummer KM, Anderson MA (2014) Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata. Mol Plant Pathol 15(1):67–79

    CAS  PubMed  Google Scholar 

  • Dubovskii PV, Vassilevski AA, Slavokhotova AA, Odintsova TI, Grishin EV, Egorov TA, Arseniev AS (2011) Solution structure of a defense peptide from wheat with a 10-cysteine motif. Biochem Biophys Res Commun 411(1):14–18

    CAS  PubMed  Google Scholar 

  • Dubreil L, Méliande S, Chiron H, Compoint JP, Quillien L, Branlard G, Marion D (1998) Effect of puroindolines on the breadmaking properties of wheat flour. Cereal Chem 75(2):222–229

    CAS  Google Scholar 

  • Egger M, Hauser M, Mari A, Ferreira F, Gadermaier G (2010) The role of lipid transfer proteins in allergic diseases. Curr Allergy Asthma Rep 10(5):326–335

    CAS  PubMed  Google Scholar 

  • Egorov TA, Odintsova TI, Pukhalsky VA, Grishin EV (2005) Diversity of wheat anti-microbial peptides. Peptides 26(11):2064–2073

    CAS  PubMed  Google Scholar 

  • Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262(17):8128–8130

    CAS  PubMed  Google Scholar 

  • Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262(12):5908–5912

    CAS  PubMed  Google Scholar 

  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, VanDorsselaer A, Horst WJ (2003) Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133(4):1935–1946

    PubMed Central  CAS  PubMed  Google Scholar 

  • François IE, Dwyer GI, De Bolle MF, Goderis IJ, Van Hemelrijck W, Proost P, Wouters P, Broekaert WZ, Cammue B (2002) Processing in transgenic Arabidopsis thaliana plants of polyproteins with linker peptide variants derived from the Impatiens balsamina antimicrobial polyprotein precursor. Plant Physiol Biochem 40(10):871–879

    Google Scholar 

  • Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M (2012) Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 8:e1002882

    PubMed Central  CAS  PubMed  Google Scholar 

  • Galat A (1999) Variations of sequences and amino acid compositions of proteins that sustain their biological functions: an analysis of the cyclophilin family of proteins. Arch Biochem Biophys 371:149–162

    CAS  PubMed  Google Scholar 

  • Gao GH, Liu W, Dai JX, Wang JF, Hu Z, Zhang Y, Wang DC (2001) Solution structure of PAFP-S: a new knottin-type antifungal peptide from the seeds of Phytolacca americana. Biochemistry 40(37):10973–10978

    CAS  PubMed  Google Scholar 

  • Garcia-Casado G, Collada C, Allona I, Casado R, Pacios LF, Aragoncillo C, Gomez L (1998) Site-directed mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology 8(10):1021–1028

    CAS  PubMed  Google Scholar 

  • Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Anderson MA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Exp Bot 65(6):1541–1550

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gautier MF, Aleman ME, Guirao A, Marion D, Joudrier P (1994) Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25(1):43–57

    CAS  PubMed  Google Scholar 

  • Gautier MF, Cosson P, Guirao A, Alary R, Joudrier P (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci 153(1):81–91

    CAS  Google Scholar 

  • Geng S, Li A, Tang L, Yin L, Wu L, Lei C, Guo XP, Zhang X, Jiang GH, Zhai WX, Wei YM, Zheng YL, Lan XJ, Mao L (2013) TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice. J Exp Bot 64(11):3125–3136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS ONE 7(6):e39557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh M (2006) Antifungal properties of haem peroxidase from Acorus calamus. Ann Bot 98(6):1145–1153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh P, Roy A, Chakraborty J, Das S (2013) Biological safety assessment of mutant variant of Allium sativum leaf agglutinin (mASAL), a novel antifungal protein for future transgenic application. J Agric Food Chem 61(48):11858–11864

    CAS  PubMed  Google Scholar 

  • Gifoni JM, Oliveira JT, Oliveira HD, Batista AB, Pereira ML, Gomes AS, Oliveira HP, Grangeiro TB, Vasconcelos IM (2012) A novel chitin-binding protein from Moringa oleifera seed with potential for plant disease control. Biopolymers 98(4):406–415

    CAS  PubMed  Google Scholar 

  • Giroux MJ, Sripo T, Gerhardt S, Sherwood J (2003) Puroindolines: their role in grain hardness and plant defence. Biotechnol Genet Eng Rev 20(1):277–290

    CAS  PubMed  Google Scholar 

  • Göthel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    PubMed  Google Scholar 

  • Gozia O, Ciopraga J, Bentia T, Lungu M, Zamfirescu I, Tudor R, Roseanu A, Nitu F (1993) Antifungal properties of lectin and new chitinases from potato tubers. Comptes rendus de l’Academie des sciences. Series III Sci de la vie 316(8):788–792

    CAS  Google Scholar 

  • Graham LS, Sticklen MB (1994) Plant chitinases. Can J Bot 72(8):1057–1083

    CAS  Google Scholar 

  • Grenier J, Potvin C, Trudel J, Asselin A (1999) Some thaumatin-like proteins hydrolyse polymeric β-1, 3-glucans. Plant J 19(4):473–480

    CAS  PubMed  Google Scholar 

  • Grover A, Gowthaman R (2003) Strategies for development of fungus-resistant transgenic plants. Curr Sci 84(3):330–340

    Google Scholar 

  • Gun Lee D, Yub Shin S, Maeng CY, Zhu Jin Z, Lyong Kim K, Hahm KS (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263(3):646–651

    CAS  PubMed  Google Scholar 

  • Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21(2):204–210

    CAS  PubMed  Google Scholar 

  • Hanselle T, Ichinose Y, Barz W (2001) Biochemical and molecular biological studies on infection (Ascochyta rabiei)-induced thaumatin-like proteins from chickpea plants (Cicer arietinum L.). Zeitschrift Naturforschung C 56(11/12):1095–1107

    CAS  Google Scholar 

  • Hasan I, Ozeki Y, Kabir SR (2014) Purification of a novel chitin-binding lectin with antimicrobial and antibiofilm ultivar of potato (Solanum tuberosum). Indian J Biochem Biophys 51(2):142–148

    CAS  PubMed  Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42(5):462–468

    CAS  PubMed  Google Scholar 

  • Huang X, Xie WJ, Gong ZZ (2000) Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478(1):123–126

    CAS  PubMed  Google Scholar 

  • Huang RH, Xiang Y, Liu XZ, Zhang Y, Hu Z, Wang DC (2002) Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett 521(1):87–90

    CAS  PubMed  Google Scholar 

  • Huang RH, Xiang Y, Tu GZ, Zhang Y, Wang DC (2004) Solution structure of Eucommia antifungal peptide: a novel structural model distinct with a five-disulfide motif. Biochemistry 43(20):6005–6012

    CAS  PubMed  Google Scholar 

  • Huynh QK, Hironaka CM, Levine EB, Smith CE, Borgmeyer JR, Shah DM (1992) Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J Biol Chem 267(10):6635–6640

    CAS  PubMed  Google Scholar 

  • Hwang B, Hwang JS, Lee J, Lee DG (2010) Antifungal properties and mode of action of psacotheasin, a novel knottin-type peptide derived from Psacothea hilaris. Biochem Biophys Res Commun 400:352–357

    CAS  PubMed  Google Scholar 

  • Imamura T, Yasuda M, Kusano H, Nakashita H, Ohno Y, Kamakura T, Taguchi S, Shimada H (2010) Acquired resistance to the rice blast in transgenic rice accumulating the antimicrobial peptide thanatin. Transgenic Res 19(3):415–424

    CAS  PubMed  Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8(1):97–109

    CAS  PubMed  Google Scholar 

  • Janssen BJ, Schirra HJ, Lay FT, Anderson MA, Craik DJ (2003) Structure of Petunia hybrida defensin 1, a novel plant defensin with five disulfide bonds. Biochemistry 42(27):8214–8222

    CAS  PubMed  Google Scholar 

  • Jayaraj J, Punja ZK (2007) Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Rep 26(9):1539–1546

    CAS  PubMed  Google Scholar 

  • Jha S, Tank HG, Prasad BD, Chattoo BB (2009) Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res 18(1):59–69

    CAS  PubMed  Google Scholar 

  • Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, Luo K (2010) Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiol 30(12):1599–1605

    CAS  PubMed  Google Scholar 

  • Joshi BN, Sainani MN, Bastawade KB, Gupta VS, Ranjekar PK (1998) Cysteine protease inhibitor from pearl millet: a new class of antifungal protein. Biochem Biophys Res Commun 246(2):382–387

    CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    CAS  PubMed  Google Scholar 

  • Kant P, Gulati A, Harris L, Gleddie S, Singh J, Pauls K (2012) Transgenic corn plants with modified ribosomal protein L3 show decreased ear rot disease after inoculation with ‘Fusarium graminearum’. Aust J Crop Sci 6(12):1598

    CAS  Google Scholar 

  • Kanzaki H, Nirasawa S, Saitoh H, Ito M, Nishihara M, Terauchi R, Nakamura I (2002) Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet 105(6–7):809–814

    CAS  PubMed  Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function ofpathogenesis-related’proteins: four PR proteins of tobacco have 1, 3-β-glucanase activity. EMBO J 6(11):3209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiba A, Saitoh H, Nishihara M, Omiya K, Yamamura S (2003) C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol 44(3):296–303

    CAS  PubMed  Google Scholar 

  • Kim KH, Feiz L, Dyer AT, Grey W, Hogg AC, Martin JM, Giroux MJ (2012) Increased resistance to Penicillium seed rot in transgenic wheat over-expressing puroindolines. J Phytopathol 160(5):243–247

    CAS  Google Scholar 

  • Kirubakaran SI, Sakthivel N (2007) Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expr Purif 52(1):159–166

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Fukuda M, Igarashi D, Sunaoshi M (2000) Cytokinin-binding proteins from tobacco callus share homology with osmotin-like protein and an endochitinase. Plant Cell Physiol 41(2):148–157

    CAS  PubMed  Google Scholar 

  • Koo JC, Lee SY, Chun HJ, Cheong YH, Choi JS, Kawabata SI, Miyagi M, Tsunasawa S, Ha KS, Bae DW, Han CD, Cho MJ (1998) Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochimica Biophys Acta (BBA)-Protein Struct Mol Enzymol 1382(1):80–90

    CAS  Google Scholar 

  • Kotsira VP, Clonis YD (1997) Oxalate oxidase from barley roots: purification to homogeneity and study of some molecular, catalytic, and binding properties. Arch Biochem Biophys 340(2):239–249

    CAS  PubMed  Google Scholar 

  • Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ (2001) Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant Microbe Interact 14(10):1255–1260

    CAS  PubMed  Google Scholar 

  • Kristensen BK, Bloch H, Rasmussen SK (1999) Barley coleoptile peroxidases. Purification, molecular cloning, and induction by pathogens. Plant Physiol 120(2):501–512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2001a) Isolation of a small chitinase-like antifungal protein from Panax notoginseng (sanchi ginseng) roots. Int J Biochem Cell Biol 33(3):287–292

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2001b) First Simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch Biochem Biophys 393(2):271–280

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2001c) Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochem Biophys Res Commun 285(4):1071–1075

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2001d) Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng. Biochem Biophys Res Commun 285(2):419–423

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2002) Pananotin, a potent antifungal protein from roots of the traditional chinese medicinal herb Panax notoginseng. Planta Med 68(11):1024–1028

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2009) A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 16(5):444–450

    PubMed  Google Scholar 

  • Lam SK, Ng TB (2010a) Acaconin, a chitinase-like antifungal protein with cytotoxic and anti-HIV-1 reverse transcriptase activities from Acacia confusa seeds. Acta Biochim Pol 57(3):299

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2010b) First report of an antifungal amidase from Peltophorum ptercoarpum. Biomed Chromatogr 24(5):458–464

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2010c) Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine 17(6):457–462

    CAS  PubMed  Google Scholar 

  • Lam SK, Ng TB (2013) Purification and characterization of an antifungal peptide with potent antifungal activity but devoid of antiproliferative and HIV reverse transcriptase activities from legumi secchi beans. Appl Biochem Biotechnol 169(7):2165–2174

    CAS  PubMed  Google Scholar 

  • Lam YW, Wang HX, Ng TB (2000) A robust cysteine-deficient chitinase-like antifungal protein from inner shoots of the edible chive Allium tuberosum. Biochem Biophys Res Commun 279(1):74–80

    CAS  PubMed  Google Scholar 

  • Lam SK, Han Q, Ng TB (2009) Isolation and characterization of a lectin with potentially exploitable activities from caper (Capparis spinosa) seeds. Biosci Rep 29:293–299

    CAS  PubMed  Google Scholar 

  • Lane BG, Dunwell JM, Ray JA, Schmitt MR, Cuming AC (1993) Germin, a protein marker of early plant development, is an oxalate oxidase. J Biol Chem 268(17):12239–12242

    CAS  PubMed  Google Scholar 

  • Leah R, Tommerup H, Svendsen IB, Mundy J (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem 266(3):1564–1573

    CAS  PubMed  Google Scholar 

  • Lee S, Moon H, Kurata S, Natori S, Lee B (1995) Purification and cDNA cloning of an antifungal protein from the hemolymph of Holotrichia diomphalia larvae. Biol Pharma Bull 18(8):1049–1052

    CAS  Google Scholar 

  • Leone P, Menu-Bouaouiche L, Peumans WJ, Payan F, Barre A, Roussel A, Rougé P (2006) Resolution of the structure of the allergenic and antifungal banana fruit thaumatin-like protein at 1.7-Å. Biochimie 88(1):45–52

    CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    CAS  PubMed  Google Scholar 

  • Li Z, Zhou M, Zhang Z, Ren L, Du L, Zhang B, Xu HJ, Xin Z (2011) Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis. Funct Integr Genomics 11(1):63–70

    CAS  PubMed  Google Scholar 

  • Lin P, Wong JH, Ng TB, Ho VSM, Xia L (2013) A sorghum xylanase inhibitor-like protein with highly potent antifungal, antitumor and HIV-1 reverse transcriptase inhibitory activities. Food Chem 141(3):2916–2922

    CAS  PubMed  Google Scholar 

  • Majewski J, Stec B (2010) X-ray scattering studies of model lipid membrane interacting with purothionin provide support for a previously proposed mechanism of membrane lysis. Eur Biophys J39:1155–1165

    Google Scholar 

  • Mak AS, Jones BL (1976) The amino acid sequence of wheat β-purothionin. Can J Biochem 54(10):835–842

    CAS  PubMed  Google Scholar 

  • Mandal SM, Migliolo L, Franco OL, Ghosh AK (2011) Identification of an antifungal peptide from Trapa natans fruits with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32(8):1741–1747

    CAS  PubMed  Google Scholar 

  • Mandal SM, Porto WF, Dey P, Maiti MK, Ghosh AK, Franco OL (2013) The attack of the phytopathogens and the trumpet solo: identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Biochimie 95(10):1939–1948

    CAS  PubMed  Google Scholar 

  • Marivet J, Margis-Pinheiro M, Frendo P, Burkard G (1994) Bean cyclophilin gene expression during plant development and stress conditions. Plant Mol Biol 26:1181–1189

    CAS  PubMed  Google Scholar 

  • Marx F, Binder U, Leiter E, Pocsi I (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 65(3):445–454

    CAS  PubMed  Google Scholar 

  • Meiyalaghan S, Barrell PJ, Jacobs JM, Conner AJ (2011) Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance. BMC Biotechnol 11(1):93

    PubMed Central  CAS  PubMed  Google Scholar 

  • Melo FR, Rigden DJ, Franco OL, Mello LV, Ary MB, Grossi de Sá MF, Bloch C (2002) Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins: Struct Funct Bioinf 48(2):311–319

    CAS  Google Scholar 

  • Min K, Ha SC, Hasegawa PM, Bressan RA, Yun DJ, Kim KK (2004) Crystal structure of osmotin, a plant antifungal protein. Proteins: Struct Funct Bioinf 54(1):170–173

    CAS  Google Scholar 

  • Moreira JS, Almeida RG, Tavares LS, Santos MO, Viccini LF, Vasconcelos IM, Oliveira JT, Raposo NR, Dias SC, Franco OL (2011) Identification of botryticidal proteins with similarity to NBS-LRR proteins in rosemary pepper (Lippia sidoides Cham) flowers. Protein J 30(1):32–38

    CAS  PubMed  Google Scholar 

  • Moscetti I, Tundo S, Janni M, Sella L, Gazzetti K, Tauzin A, Giardina T, Masci S, Favaron F, D’Ovidio R (2013) Constitutive expression of the xylanase inhibitor TAXI-III delays Fusarium head blight symptoms in durum wheat transgenic plants. Mol Plant Microbe Interact 26(12):1464–1472

    CAS  PubMed  Google Scholar 

  • Munger A, Coenen K, Cantin L, Goulet C, Vaillancourt LP, Goulet MC, Tweddell R, Sainsbury F, Michaud D (2012) Beneficial ‘unintended effects’ of a cereal cystatin in transgenic lines of potato. Solanum Tuberosum BMC Plant Biol 12:198

    CAS  Google Scholar 

  • Muramoto N, Tanaka T, Shimamura T, Mitsukawa N, Hori E, Koda K, Otani M, Hirai M, Nakamura K, Imaeda T (2012) Transgenic sweet potato expressing thionin from barley gives resistance to black rot disease caused by Ceratocystis fimbriata in leaves and storage roots. Plant Cell Rep 31(6):987–997

    CAS  PubMed  Google Scholar 

  • Nagpure A, Choudhary B, Gupta RK (2014) Chitinases: in agriculture and human healthcare. Crit Rev Biotechnol 34(3):215–232

    CAS  PubMed  Google Scholar 

  • Nahirñak V, Almasia NI, Hopp HE, Vazquez-Rovere C (2012) Snakin/GASA proteins. Plant Signal Behav 7(8):1004–1008

    PubMed Central  PubMed  Google Scholar 

  • Narasimhan ML, Damsz B, Coca MA, Ibeas JI, Yun DJ, Pardo JM, Hasegawa PM, Bressan RA (2001) A plant defense response effector induces microbial apoptosis. Mol Cell 8(4):921–930

    CAS  PubMed  Google Scholar 

  • Narasimhan ML, Lee H, Damsz B, Singh NK, Ibeas JI, Matsumoto TK, Woloshuk CP, Bressan RA (2003) Overexpression of a cell wall glycoprotein in Fusarium oxysporum increases virulence and resistance to a plant PR-5 protein. Plant J 36(3):390–400

    CAS  PubMed  Google Scholar 

  • Neumann GM, Condron R, Polya GM (1996) Purification and mass spectrometry-based sequencing of yellow mustard (Sinapis alba L.) 6 kDa proteins Identification as antifungal proteins. Int J Pept Protein Res 47(6):437–446

    CAS  PubMed  Google Scholar 

  • Ng TB, Au TK, Lam TL, Ye XY, Wan DC (2002) Inhibitory effects of antifungal proteins on human immunodeficiency virus type 1 reverse transcriptase, protease and integrase. Life Sci 70(8):927–935

    CAS  PubMed  Google Scholar 

  • Ng TB, Cheung RCF, Wong JH (2013) Recent progress in research on plant antifungal proteins: a review. In Antifungal metabolites from plants (221–241) Springer: Berlin Heidelberg

  • Ng TB, Cheung RC, Wong JH, Ye XJ (2013b) Antimicrobial activity of defensins and defensin-like peptides with special emphasis on those from fungi and invertebrate animals. Curr Protein Pept Sci 14(6):515–531

    CAS  PubMed  Google Scholar 

  • Nielsen K, Payne GA, Boston RS (2001) Maize ribosome-inactivating protein inhibits normal development of Aspergillus nidulans and Aspergillus flavus. Mol Plant-Microbe Interact 14(2):164–172

    CAS  PubMed  Google Scholar 

  • Ntui VO, Thirukkumaran G, Azadi P, Khan RS, Nakamura I, Mii M (2010) Stable integration and expression of wasabi defensin gene in “Egusi” melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot. Plant Cell Rep 29(9):943–954

    CAS  PubMed  Google Scholar 

  • Nuchsuk C, Wetprasit N, Roytrakul S, Choowongkomon K, Yokthongwattana C, Arpornsuwan T, Ratanapo S (2013) Bioactivities of Jc-SCRIP, a type 1 ribosome-inactivating protein from Jatropha curcas seed coat. Chem Biol Drug Des 82(4):453–462

    CAS  PubMed  Google Scholar 

  • Oita S, Ohnishi-Kameyama M, Nagata T (2000) Binding of barley and wheat α-thionins to polysaccharides. Biosci Biotechnol Biochem 64(5):958–964

    CAS  PubMed  Google Scholar 

  • Oldach KH, Becker D, Lörz H (2001) Heterologous expression of genes mediating enhanced fungal resistance in transgenic wheat. Mol Plant-Microbe Interact 14(7):832–838

    CAS  PubMed  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F, Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368(2):257–262

    CAS  PubMed  Google Scholar 

  • Park KS, Cheong JJ, Lee SJ, Suh MC, Choi D (2000) A novel proteinase inhibitor gene transiently induced by tobacco mosaic virus infection. Biochimica Biophys Acta (BBA)-Gene Struct Expr 1492(2):509–512

    CAS  Google Scholar 

  • Parkash A, Ng TB, Tso WW (2002) Isolation and characterization of luffacylin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 23(6):1019–1024

    CAS  PubMed  Google Scholar 

  • Patel SU, Osborn R, Rees S, Thornton JM (1998) Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37(4):983–990

    CAS  PubMed  Google Scholar 

  • Pelegrini PB, Franco OL (2005) Plant γ-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int J Biochem Cell Biol 37(11):2239–2253

    CAS  PubMed  Google Scholar 

  • Pelegrini PB, Noronha EF, Muniz MA, Vasconcelos IM, Chiarello MD, Oliveira JT, Franco OL (2006) An antifungal peptide from passion fruit (Passiflora edulis) seeds withsimilarities to 2S albumin proteins. Biochim Biophys Acta 1764(6):1141–1146

    CAS  PubMed  Google Scholar 

  • Peumans WJ, Hao Q, van Damme EJ (2001) Ribosome-inactivating proteins from plants: more than RNA N-glycosidases? FASEB J 15(9):1493–1506

    CAS  PubMed  Google Scholar 

  • Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van den Elzen PJ, Melchers LS, Cornelissen BJ (1994) A novel pathogen-and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 104(1):109–118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacon O, López Y, Rodriguez M, Castillo J, Pujol M, Enriquez G, Borroto C, Trujillo L, Thomma BP, Borrás-Hidalgo O (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8(6):678–690

    CAS  PubMed  Google Scholar 

  • Porto WF, Souza VA, Nolasco DO, Franco OL (2012) In silico identification of novel hevein-like peptide precursors. Peptides 38(1):127–136

    CAS  PubMed  Google Scholar 

  • Pu Z, Lu B, Liu W, Jin SW (1996) Characterization of the enzymatic mechanism of γ-momorcharin, a novel ribosome-inactivating protein with lower molecular weight of 11,500 purified from the seeds of bitter gourd (Momordica charantia). Biochem Biophys Res Commun 229(1):287–294

    CAS  PubMed  Google Scholar 

  • Qian Q, Huang L, Yi R, Wang S, Ding Y (2014) Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein alpha-momorcharin. Plant Sci 217:1–7

    PubMed  Google Scholar 

  • Quilis J, López García B, Meynard D, Guiderdoni E, San Segundo B (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12(3):367–377

    CAS  PubMed  Google Scholar 

  • Rahnamaeian M, Vilcinskas A (2012) Defense gene expression is potentiated in transgenic barley expressing antifungal peptide metchnikowin throughout powdery mildew challenge. J Plant Res 125(1):115–124

    CAS  PubMed  Google Scholar 

  • Rakwal R, Agrawal GK, Yonekura M (1999) Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: Induction of pathogenesis‐related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride. Electrophoresis 20(17):3472–3478

    CAS  PubMed  Google Scholar 

  • Ramos MV, Souza DP, Gomes MT, Freitas CD, Carvalho CP, Júnior PA, Salas CEA (2014) phytopathogenic cysteine peptidase from latex of wild rubber vine Cryptostegia grandiflora. Protein J 33(2):199–209

    CAS  PubMed  Google Scholar 

  • Regalado AP, Ricardo CP (1996) Study of the intercellular fluid of healthy Lupinus albus organs (presence of a chitinase and a thaumatin-like protein). Plant Physiol 110(1):227–232

    PubMed Central  CAS  PubMed  Google Scholar 

  • Regente M, Taveira GB, Pinedo M, Elizalde MM, Ticchi AJ, Diz MS, Carvalho AO, Canal L, Gomes VM (2014) A sunflower lectin with antifungal properties and putative medical mycology applications. Curr Microbiol 69(1):88–95

    CAS  PubMed  Google Scholar 

  • Ribeiro SM, Almeida RG, Pereira CA, Moreira JS, Pinto MF, Oliveira AC, Vasconcelos IM, Oliveira JT, Santos MO, Dias SC, Franco OL (2011) Identification of a Passiflora alata Curtis dimeric peptide showing identity with 2S albumins. Peptides 32(5):868–874

    CAS  PubMed  Google Scholar 

  • Roberts TH, Hejgaard J (2008) Serpins in plants and green algae. Funct Integr Genomics 8(1):1–27

    CAS  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1986) Isolation and partial characterization of two antifungal proteins from barley. Biochim Biophys Acta (BBA)-Gen Subj 880(2):161–170

    CAS  Google Scholar 

  • Roberts WJ, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778

    CAS  Google Scholar 

  • Roberts TH, Marttila S, Rasmussen SK, Hejgaard J (2003) Differential gene expression for suicide‐substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley. J Exp Bot 54(391):2251–2263

    CAS  PubMed  Google Scholar 

  • Rogozhin EA, Oshchepkova YI, Odintsova TI, Khadeeva NV, Veshkurova ON, Egorov TA, Grishina EV, Salikhovc SI, Salikhov SI (2011) Novel antifungal defensins from Nigella sativa L. seeds. Plant Physiol Biochem 49(2):131–137

    CAS  PubMed  Google Scholar 

  • Saikia R, Singh BP, Kumar R, Arora DK (2005) Detection of pathogenesisrelated proteins-chitinase and-1, 3-glucanase in induced chickpea. Curr Sci 89(4):659–663

    CAS  Google Scholar 

  • Segura A, Moreno M, Madueño F, Molina A, García-Olmedo F (1999) Snakin-1, a peptide from potato that is active against plant pathogens. Mol Plant-Microbe Interact 12(1):16–23

    CAS  PubMed  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, van den Elzen PJ, Cornelissen BJ (1993) Only specific tobacco (Nicotiana tabacum) chitinases and [beta]-1,3-glucanases exhibit antifungal activity. Plant Physiol 101(3):857–863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67(7):2883–2894

    PubMed Central  CAS  PubMed  Google Scholar 

  • Senthilkumar R, Cheng CP, Yeh KW (2010) Genetically pyramiding protease-inhibitor genes for dual broad-spectrum resistance against insect and phytopathogens in transgenic tobacco. Plant Biotechnol J 8(1):65–75

    CAS  PubMed  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85(2):529–536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Slavokhotova AA, Odintsova TI, Rogozhin EA, Musolyamov AK, Andreev YA, Grishin EV, Egorov TA (2011) Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie 93(3):450–456

    CAS  PubMed  Google Scholar 

  • Sluyter SV, Durako MJ, Halkides CJ (2005) Comparison of grape chitinase activities in Chardonnay and Cabernet Sauvignon with Vitis rotundifolia cv. Fry Am J Enol Viticult 56(1):81–85

    Google Scholar 

  • Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F (2002) A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun 296(5):1194–1199

    CAS  PubMed  Google Scholar 

  • Song X, Wang J, Wu F, Li X, Teng M, Gong W (2005) cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Plant Mol Biol 57(1):13–20

    CAS  PubMed  Google Scholar 

  • Stec B (2006) Plant thionins-the structural perspective. Cell Mol Life Sci CMLS 63(12):1370–1385

    CAS  Google Scholar 

  • Stintzi A, Heitz T, Prasad V, Wiedemann-Merdinoglu S, Kauffmann S, Geoffroy P, Legranda M, Fritig B (1993) Plant ‘pathogenesis-related’proteins and their role in defense against pathogens. Biochimie 75(8):687–706

    CAS  PubMed  Google Scholar 

  • Stirpe F (2013) Ribosome-inactivating proteins: from toxins to useful proteins. Toxicon 67:12–16

    CAS  PubMed  Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Nat Biotechnol 10(4):405–412

    CAS  Google Scholar 

  • Stotz HU, Thomson JG, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal Behav 4(11):1010–1012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tailor RH, Acland DP, Attenborough S, Cammue BP, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem 272(39):24480–24487

    CAS  PubMed  Google Scholar 

  • Taira T, Yamagami T, Aso Y, Ishiguro M, Ishihara M (2001) Localization, accumulation, and antifungal activity of chitinases in rye (Secale cereale) seed. Biosci Biotechnol Biochem 65(12):2710–2718

    CAS  PubMed  Google Scholar 

  • Takakura Y, Oka N, Suzuki J, Tsukamoto H, Ishida Y (2012) Intercellular production of Tamavidin 1, a biotin-binding protein from Tamogitake mushroom, confers resistance to the blast fungus Magnaporthe oryzae in transgenic rice. Mol Biotechnol 51(1):9–17

    CAS  PubMed  Google Scholar 

  • Tavares PM, Thevissen K, Cammue BP, François IE, Barreto-Bergter E, Taborda CP, Marques AF, Rodrigues ML, Nimrichter L (2008) In vitro activity of the antifungal plant defensin RsAFP2 against Candida isolates and its in vivo efficacy in prophylactic murine models of candidiasis. Antimicrob Agents Chemother 52(12):4522–4525

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teng Z, Sun C, Liu S, Wang H, Zhang S (2014) Functional characterization of chitinase-3 reveals involvement of chitinases in early embryo immunity in zebrafish. Dev Comp Immunol 46(2):489–498

    CAS  PubMed  Google Scholar 

  • Terras FR, Schoofs HM, De Bolle MF, Van Leuven F, Rees SB, Vanderleyden J, Cammue BP, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267(22):15301–15309

    CAS  PubMed  Google Scholar 

  • Terras FR, Schoofs HM, Thevissen K, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (1993) Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol 103(4):1311–1319

    PubMed Central  CAS  PubMed  Google Scholar 

  • Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci CMLS 61(4):437–455

    CAS  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271(25):15018–15025

    CAS  PubMed  Google Scholar 

  • Thevissen K, Warnecke DC, François IE, Leipelt M, Heinz E, Ott C, Zahringer U, Thomma BP, Ferket KK, Cammue BP (2004) Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279(6):3900–3905

    CAS  PubMed  Google Scholar 

  • Thevissen K, Kristensen HH, Thomma BP, Cammue B, François IE (2007) Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today 12(21–22):966–971

    CAS  PubMed  Google Scholar 

  • Thevissen K, de Mello TP, Xu D, Blankenship J, Vandenbosch D, Idkowiak-Baldys J, Govaert G, Bink A, Rozental S, de Groot PW, Davis TR, Kumamoto CA, Vargas G, Nimrichter L, Coenye T, Mitchell A, Roemer T, Hannun YA, Cammue BP (2012) The plant defensin RsAFP2 induces cell wall stress, septin mislocalization and accumulation of ceramides in Candida albicans. Mol Microbiol 84(1):166–180

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson C, Dunwell JM, Johnstone CE, Lay V, Ray J, Schmitt M, Watson H, Nisbet G (1995) Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. In The methodology of plant genetic manipulation: criteria for decision making (169–172) Springer: Netherlands

  • Tian J, Zhang X, Liang B, Li S, Wu Z, Wang Q, Leng C, Dong J, Wang T (2010) Expression of baculovirus anti-apoptotic genes p35 and op-iap in cotton (Gossypium hirsutum L.) enhances tolerance to Verticillium Wilt. PLoS ONE 5(12):e14218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tian GT, Zhu MJ, Wu YY, Liu Q, Wang HX, Ng TB (2013) Purification and characterization of a protein with antifungal, antiproliferative, and HIV-1 reverse transcriptase inhibitory activities from small brown-eyed cowpea seeds. Biotechnol Appl Biochem 60(4):393–398

    CAS  PubMed  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19:1580–1589

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ueda M, Ito A, Nakazawa M, Miyatake K, Sakaguchi M, Inouye K (2014) Cloning and expression of the cold-adapted endo-1,4-β-glucanase gene from Eisenia fetida. Carbohydr Polym 101:511–516

    CAS  PubMed  Google Scholar 

  • Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183(2):258–264

    PubMed  Google Scholar 

  • Vasavirama K, Kirti PB (2013) Constitutive expression of a fusion gene comprising-defensin (Tfgd2) and antifungal protein (RsAFP2) confers enhanced disease and insect resistance in transgenic tobacco. Plant Cell Tissue Organ Cult 115(3):309–319

    CAS  Google Scholar 

  • Velazhahan R, Datta SK, Muthukrishnan S (1999) The PR-5 family: thaumatin-like proteins. Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 107–129

    Google Scholar 

  • Vigers AJ, Wiedemann S, Roberts WK, Legrand M, Selitrennikoff CP, Fritig B (1992) Thaumatin-like pathogenesis-related proteins are antifungal. Plant Sci 83(2):155–161

    CAS  Google Scholar 

  • Vijayan S, Singh NK, Shukla P, Kirti PB (2013) Defensin (TvD1) from Tephrosia villosa exhibited strong anti-insect and anti-fungal activities in transgenic tobacco plants. J Pest Sci 86(2):337–344

    Google Scholar 

  • Vogelsang R, Barz W (1993) Purification, characterization and differential hormonal regulation of a β-1, 3-glucanase and two chitinases from chickpea (Cicer arietinum L.). Planta 189(1):60–69

    CAS  PubMed  Google Scholar 

  • Vriens K, Cammue BP, Thevissen K (2014) Antifungal plant defensins: mechanisms of action and production. Molecules 19:12280–12303

    PubMed  Google Scholar 

  • Vu L, Huynh QK (1994) Isolation and characterization of a 27-kDa antifungal protein from the fruits of Diospyros texana. Biochem Biophys Res Commun 202(2):666–672

    CAS  PubMed  Google Scholar 

  • Wang X, Bunkers GJ (2000) Potent heterologous antifungal proteins from cheeseweed (Malva parviflora). Biochem Biophys Res Commun 279(2):669–673

    CAS  PubMed  Google Scholar 

  • Wang HX, Ng TB (2000a) Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem Biophys Res Commun 269(1):203–208

    CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (2000b) Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein. Biochem Biophys Res Commun 279(2):407–411

    CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (2001) Isolation of a novel deoxyribonuclease with antifungal activity from Asparagus officinalis seeds. Biochem Biophys Res Commun 289(1):120–124

    CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (2002a) Isolation of an antifungal thaumatin-like protein from kiwi fruits. Phytochemistry 61(1):1–6

    CAS  PubMed  Google Scholar 

  • Wang H, Ng TB (2002b) Isolation of cicadin, a novel and potent antifungal peptide from dried juvenile cicadas. Peptides 23(1):7–11

    PubMed  Google Scholar 

  • Wang HX, Ng TB (2003) Dendrocin, a distinctive antifungal protein from bamboo shoots. Biochem Biophys Res Commun 307(3):750–755

    CAS  PubMed  Google Scholar 

  • Wang H, Ye XY, Ng TB (2001) Purification of chrysancorin, a novel antifungal protein with mitogenic activity from garland chrysanthemum seeds. Biol Chem 382(6):947–951

    CAS  PubMed  Google Scholar 

  • Wang SX, Peng KQ, Xiao LT, Xia ST, Tong H, Wang RZ (2003) Study on application of synergist to rice special fertilizers and its mechanism. Plant Nutr Fertil Sci 9(3):294–298

    Google Scholar 

  • Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant-Microbe Interact 22(3):235–244

    CAS  PubMed  Google Scholar 

  • Wang S, Shao B, Rao P, Deng Z, Xie M (2011) Limlin, a novel leguminous peroxidase with antifungal activity from Phaseolus limensis. J Food Biochem 35(4):1206–1222

    CAS  Google Scholar 

  • Wang JF, Du LP, Li Z, Huang SP, Ye XG, Feng D, Zhang ZY (2012) Development and characterization of SN1 transgenic wheat plants with enhanced resistance to Rhizoctonia cerealis and Bipolaris sorokiniana. Acta Agron Sin 38(5):773–779

    CAS  Google Scholar 

  • Wang X, Zhu X, Tooley P, Zhang X (2013) Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. Plant Mol Biol 81(4–5):379–400

    CAS  PubMed  Google Scholar 

  • Wang S, Shao B, Lu W, Hong J, Rao P (2014) Isolation of a trypsin-chymotrypsin inhibitor and its functional properties. Prep Biochem Biotechnol 44(6):545–557

    PubMed  Google Scholar 

  • Wel H, Loeve K (1972) Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur J Biochem 31(2):221–225

    PubMed  Google Scholar 

  • Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, Van den Elzen PJ, Cornelissen BJ (1991) Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell Online 3(6):619–628

    CAS  Google Scholar 

  • Wong JH, Zhang XQ, Wang HX, Ng TB (2006) A mitogenic defensin from white cloud beans (Phaseolus vulgaris). Peptides 27(9):2075–2081

    CAS  PubMed  Google Scholar 

  • Wong JH, Ng TB, Cheung RC, Ye XJ, Wang HX, Lam SK, Lin P, Chan YS, Fang EF, Ngai PHK, Xia LX, Ye XY, Jiang Y, Liu F (2010) Proteins with antifungal properties and other medicinal applications from plants and mushrooms. Appl Microbiol Biotechnol 87(4):1221–1235

    CAS  PubMed  Google Scholar 

  • Wróbel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmiański J, Kepczyńska E, Szopa J (2004) Expression of β-1, 3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 65(5):245–256

    Google Scholar 

  • Wu CT, Leubner-Metzger G, Meins F, Bradford KJ (2001) Class I β-1, 3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiol 126(3):1299–1313

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wurms K, Greenwood D, Sharrock K, Long P (1999) Thaumatin‐like protein in kiwifruit. J Sci Food Agric 79(11):1448–1452

    CAS  Google Scholar 

  • Xiang Y, Song M, Wei Z, Tong J, Zhang L, Xiao L, Ma Z, Wang Y (2011) A jacalin-related lectin-like gene in wheat is a component of the plant defence system. J Exp Bot 62(15):5471–5483

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan R, Hou J, Ding D, Guan W, Wang C, Wu Z, Li M (2008) In vitro antifungal activity and mechanism of action of chitinase against four plant pathogenic fungi. J Basic Microbiol 48:293–301

    CAS  PubMed  Google Scholar 

  • Yang Q, Gong ZZ (2002) Purification and characterization of an ethylene-induced antifungal protein from leaves of guilder rose (Hydrangea macrophylla). Protein Expr Purif 24(1):76–82

    CAS  PubMed  Google Scholar 

  • Yang X, Xiao Y, Wang X, Pei Y (2007) Expression of a novel small antimicrobial protein from the seeds of motherwort (Leonurus japonicus) confers disease resistance in tobacco. Appl Environ Microbiol 73(3):939–946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye XY, Ng TB (2002a) A new peptidic protease inhibitor from Vicia faba seeds exhibits antifungal, HIV-1 reverse transcriptase inhibiting and mitogenic activities. J Pept Sci 8(12):656–662

    CAS  PubMed  Google Scholar 

  • Ye XY, Ng TB (2002b) Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci 70(10):1129–1138

    CAS  PubMed  Google Scholar 

  • Ye XY, Ng TB (2002c) Isolation of a novel peroxidase from French bean legumes and first demonstration of antifungal activity of a non-milk peroxidase. Life Sci 71(14):1667–1680

    CAS  PubMed  Google Scholar 

  • Ye XY, Wang HX, Ng TB (1999) First chromatographic isolation of an antifungal thaumatin-like protein from French bean legumes and demonstration of its antifungal activity. Biochem Biophys Res Commun 263(1):130–134

    CAS  PubMed  Google Scholar 

  • Ye XY, Wang HX, Ng TB (2000) Dolichin, a new chitinase-like antifungal protein isolated from field beans (Dolichos lablab). Biochem Biophys Res Commun 269(1):155–159

    CAS  PubMed  Google Scholar 

  • Ye XY, Ng TB, Rao PF (2001a) A Bowman-Birk-type trypsin-chymotrypsin inhibitor from broad beans. Biochem Biophys Res Commun 289(1):91–96

    CAS  PubMed  Google Scholar 

  • Ye XY, Ng TB, Tsang PW, Wang J (2001b) Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. J Protein Chem 20(5):367–375

    CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JK (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Prot Sci 17(2):191–198

    CAS  Google Scholar 

  • Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Expert Bot 56(416):1685–1695

    CAS  Google Scholar 

  • Yun DJ, Ibeas JI, Lee H, Coca MA, Narasimhan ML, Uesono Y, Hasegawa PM, Pardo JM, Bressan RA (1998) Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. Mol Cell 1(6):807–817

    CAS  PubMed  Google Scholar 

  • Zamani A, Sturrock RN, Ekramoddoullah AK, Liu JJ, Yu X (2004) Gene cloning and tissue expression analysis of a PR-5 thaumatin-like protein in Phellinus weirii-infected Douglas-fir. Phytopathol 94(11):1235–1243

    CAS  Google Scholar 

  • Zhang J, Martin JM, Balin-Kurti P, Huang L, Giroux MJ (2011) The wheat puroindoline genes confer fungal resistance in transgenic corn. J Phytopathol 159(3):188–190

    Google Scholar 

  • Zhang Y, Wang X, Li Y, Wu L, Zhou H, Zhang G, Ma Z (2013) Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis. Plant Cell Rep 32(11):1703–1713

    CAS  PubMed  Google Scholar 

  • Zhang B, Xie C, Wei Y, Li J, Yang X (2015) Purification and characterisation of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (Momordica charantia) leaves. Protein Expr Purif 107:43–49

    CAS  PubMed  Google Scholar 

  • Zhu B, Chen TH, Li PH (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expressing sense and antisense genes for an osmotin-like protein. Planta 198(1):70–77

    CAS  PubMed  Google Scholar 

  • Zoubenko O, Uckun F, Hur Y, Chet I, Tumer N (1997) Plant resistance to fungal infection induced by nontoxic pokeweed antiviral protein mutants. Nat Biotechnol 15(10):992–996

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiu-juan Ye, Tzi Bun Ng or Zu-jian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Yuan, Ss., Jiang, Ll. et al. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 99, 4961–4981 (2015). https://doi.org/10.1007/s00253-015-6654-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6654-6

Keywords

Navigation