Skip to main content
Log in

Characterization of the Penicillium chrysogenum antifungal protein PAF

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The filamentous fungus Penicillium chrysogenum abundantly secretes the small, highly basic and cysteine-rich protein PAF (Penicillium antifungal protein). In this study, the antifungal activity of PAF is described. PAF inhibited the growth of a variety of filamentous fungi, including opportunistic human pathogenic and phytopathogenic fungi, whereas bacterial and yeast cells were unaffected. PAF reduced the conidial germination and hyphal extension rates in a dose-dependent manner and induced severe changes in cell morphology that resulted in crippled and distorted hyphae and atypical branching. Growth-affected hyphae suffered from oxidative stress, plasma membrane leakage, and metabolic inactivity, which points to an induction of multifactorial effects in sensitive fungi. In contrast to other known antifungal proteins, the effects of PAF were only partially antagonized by cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5A, B.

Similar content being viewed by others

References

  • Abad LR, D'Urzo, MP, Narasimhan, ML, Reuveni, M., Zhu, JK, Niu, X., Singh, NK, Haegawa, PM, Bressan, RA (1996) Antifungal activity of tobacco osmotin has specificity and inolves plasma membrane permeabilization. Plant Sci 118:11–23

    Article  CAS  Google Scholar 

  • Bormann C, Baier D, Horr I, Raps C. Berger J, Jung G, Schwarz H (1999) Characterization of a novel, antifungal, chitin-binding protein from Streptomyces tendae Tu901 that interferes with growth polarity. J Bacteriol 181:7421–7429

    CAS  PubMed  Google Scholar 

  • Broekaert WF, Terras, FRG, Cammue, BPA, Vanderleyden J. (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–59

    Article  CAS  Google Scholar 

  • De Samblanx GW, Goderis IJ, Thevissen K, Raemaekers R, Fant F, Borremans F, Acland DP, Osborn RW, Patel S, Broekaert W (1997) Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem 272:1171–1179

    PubMed  Google Scholar 

  • Dimarcq JL, Bulet P, Hetru C, Hoffmann J (1998) Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers 47:465–477

    CAS  PubMed  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium-induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    CAS  PubMed  Google Scholar 

  • Ganz T (1994) Biosynthesis of defensins and other antimicrobial peptides. Ciba Found Symp 186:62–71

    CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Alamillo JM, Rodriguez-Palenzuela P (1998) Plant defense peptides. Biopolymers 47:479–491

    CAS  PubMed  Google Scholar 

  • Geisen R (2000) P. nalgiovense carries a gene which is homologous to the paf gene of P. chrysogenum which codes for an antifungal peptide. Int J Food Microbiol 62:95–101

    Article  CAS  PubMed  Google Scholar 

  • Lass-Florl C, Nagl M, Speth C, Ulmer H, Dierich MP, Wurzner R (2001) Studies of in vitro activities of voriconazole and itraconazole against Aspergillus hyphae using viability staining. Antimicrob Agents Chemother 45:124–128

    Article  PubMed  Google Scholar 

  • Lee GD, Shin SY, Maeng CY, Jin ZZ, Kim KL, Hahm KS (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263:646–651

    Article  CAS  PubMed  Google Scholar 

  • Levina NN, Lew RR, Hyde J, Heath IB (1995) The role of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. J Cell Sci 108:3405–3417

    CAS  PubMed  Google Scholar 

  • Ludwig A, Boller T (1990) A method for the study of fungal growth inhibition by plant proteins. FEMS Microbiol Lett 69:61–66

    Article  CAS  Google Scholar 

  • Martinez Del Pozo A, Lacadena V, Mancheno JM, Olmo N, Onaderra M, Gavilanes JG (2002) The antifungal protein AFP of Aspergillus giganteus is an OB fold-containing protein that produces condensation of DNA. J Biol Chem 277:46179–46183

    Article  PubMed  Google Scholar 

  • Marx F, Haas H, Reindl M, Stoffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171

    Article  CAS  PubMed  Google Scholar 

  • Millard PJ, Roth BL, Thi HP, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63:2897–2905

    CAS  PubMed  Google Scholar 

  • Moore CB, Sayers N, Mosquera J, Slaven J, Denning DW (2000) Antifungal drug resistance in Aspergillus. J Infection 41:203–220

    Article  CAS  Google Scholar 

  • Osborn RW, De Samblanx GW, Thevissen K, Goderis I, Torrekens S, Van Leuven F. Attenborough S, Rees SB, Broekaert WF (1995) Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett 368:257–262

    CAS  PubMed  Google Scholar 

  • Raj PA, Dentino AR (2002) Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett 206:9–18

    CAS  PubMed  Google Scholar 

  • Roos W, Schulze R, Steighart J (1997) Dynamic compartmentation of vacuolar amino acids in Penicillium cyclopium. J Biol Chem 272:15849–15855

    Article  CAS  PubMed  Google Scholar 

  • Slayman CL, Slayman CW (1968) Net uptake of potassium in Neurospora. Exchange for sodium and hydrogen ions. J Gen Physiol 52:424–443

    CAS  PubMed  Google Scholar 

  • Tao J, Ginsberg I, Banerjee N, Held W, Koltin Y, Bruenn JA (1990) Ustilago maydis KP6 killer toxin: structure, expression in Saccharomyces cerevisiae, and relationship to other cellular toxins. Mol Cell Biol 10:1373–1381

    CAS  PubMed  Google Scholar 

  • Terras FR, Schoofs HME, De Bolle MFC, Van Leuven F, Rees SB, Vanderleyden J, Cammue BPA, Broekaert WF (1992) Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J Biol Chem 267:15301–15309

    CAS  PubMed  Google Scholar 

  • Terras FR, Torrekens S, Van Leuven F, Osborn RW, Vanderleyden J, Cammue BP, Broekaert WF (1993) A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett 316:233–240

    CAS  PubMed  Google Scholar 

  • Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–593

    Article  CAS  PubMed  Google Scholar 

  • Thevissen K, Ghazi A, De Samblanx GW, Brownlee C, Osborn RW, Broekaert WF (1996) Fungal membrane responses induced by plant defensins and thionins. J Biol Chem 271:15018–15025

    CAS  PubMed  Google Scholar 

  • Thevissen K, Osborn RW, Acland DP, Broekaert WF (1997) Specific, high affinity binding sites for an antifungal plant defensin on Neurospora crassa hyphae and microsomal membranes. J Biol Chem 272:32176–32181

    CAS  PubMed  Google Scholar 

  • Thevissen K, Terras FR, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 65:5451–5458

    CAS  PubMed  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  CAS  PubMed  Google Scholar 

  • Wnendt S, Ulbrich N, Stahl U (1994) Molecular cloning, sequence analysis and expression of the gene encoding an antifungal-protein from Aspergillus giganteus. Curr Genet 25:519–523

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Martin Kirchmair and Reinhard Würzner for providing fungal strains, and Hubertus Haas and Bernhard Redl for helpful discussions. This work was funded by the Austria Science Foundation (grant FWF P15261 to F. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florentine Marx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiserer, L., Oberparleiter, C., Weiler-Görz, R. et al. Characterization of the Penicillium chrysogenum antifungal protein PAF. Arch Microbiol 180, 204–210 (2003). https://doi.org/10.1007/s00203-003-0578-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0578-8

Key words

Navigation