Skip to main content
Log in

Thermal stability analysis of rotating porous layer with thermal non-equilibrium approach utilizing Al2O3–EG Oldroyd-B nanofluid

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The linear and nonlinear onset of convection in a viscoelastic nanofluid saturated densely packed horizontal rotating porous layer heated from below and cooled from above is investigated by considering the Oldroyd-B type fluid. The Brinkman model is used to simulate conservation of momentum in the porous medium. The temperature of the three phases—porous matrix, fluid, and nanoparticles— is considered to be under local thermal non-equilibrium, that is, the three phases have there own temperature equations. Linear stability analysis is performed using a one-term Galerkin scheme, while a minimal representation of the truncated Fourier series, involving only two terms, has been utilized for nonlinear analysis. The feasible range of new dimensionless parameters has been predicted using available experimental range of thermo-physical properties of alumina and ethylene-glycol. Obtained results have been presented graphically and discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(D_{\rm B}\) :

Brownian Diffusion coefficient

\(D_{\rm T}\) :

Thermophoretic diffusion coefficient

\(Da\) :

Darcy number

\(Pr\) :

Prandtl number

\(d\) :

Dimensional layer depth

\(k_{\rm f}\) :

Effective thermal conductivity of porous medium

\(k_{\rm T}\) :

Thermal diffusivity of porous medium

\(Le\) :

Lewis number

\(N_{\rm A}\) :

Modified diffusivity ratio

\(N_{\rm B}\) :

Modified particle-density increment

\(N_{\mathrm{HP}}\) :

Nield number for the fluid/particle interface

\(N_{\mathrm{HS}}\) :

Nield number for the fluid/solid-matrix interface

\(p\) :

Pressure

\(g\) :

Gravitational acceleration

\(Ra\) :

Thermal Rayleigh–Darcy number

\(Rm\) :

Basic density Rayleigh number

\(Rn\) :

Concentration Rayleigh number

\(Ta\) :

Taylor number

\(t\) :

Time

\(T\) :

Nanofluid temperature

\(T_{\rm c}\) :

Temperature at the upper wall

\(T_{\rm h}\) :

Temperature at the lower wall

\({\mathbf{v}}_{\rm D}\) :

Darcy velocity \(\varepsilon {\mathbf{v}}\)

\((x,y,z)\) :

Cartesian coordinates

\(\alpha _{\rm f}\) :

Thermal diffusivity of the fluid defined as \(\frac{{k_{\mathrm{f}}}}{(\rho c)}_{\mathrm{f}}\)

\(\beta\) :

Proportionality factor

\(\gamma _{\rm P}\) :

Modified thermal capacity ratio

\(\gamma _{\rm S}\) :

Modified thermal capacity ratio

\(\varepsilon\) :

Porosity

\(\mu\) :

Viscosity of the fluid

\({\bar{\mu }}\) :

Effective viscosity of the porous medium

\(\varepsilon _{\rm P}\) :

Modified thermal diffusivity ratio

\(\varepsilon _{\rm S}\) :

Modified thermal diffusivity ratio

\(\mu\) :

Viscosity of the fluid

\(\rho _{\rm f}\) :

Fluid density

\(\rho _{\rm p}\) :

Nanoparticle mass density

\((\rho c )_{\rm f}\) :

Heat capacity of the fluid

\((\rho c)_{\rm s}\) :

Heat capacity of the solid-matrix material

\((\rho c)_{\rm p}\) :

Heat capacity of the nanoparticle material

\(\phi\) :

Nanoparticle volume fraction

\(\psi\) :

Stream function

\(b\) :

Basic solution

\(f\) :

Fluid phase

\(p\) :

Particle phase

\(s\) :

Solid-matrix phase

*:

Dimensional variable

\(^{\prime }\) :

Perturbation variable

\(\nabla ^2\) :

\(\frac{\partial ^2}{\partial x^2} + \frac{\partial ^2}{\partial y^2} + \frac{\partial ^2}{\partial z^2}\)

\(\nabla _1^2\) :

\(\frac{\partial ^2}{\partial x^2} + \frac{\partial ^2}{\partial z^2}\)

References

  • Agarwal S (2014a) Thermal instability of a nanofluid saturating an anisotropic porous medium layer under local thermal non-equilibrium condition. J Nano Energy Power Res (in press)

  • Agarwal S (2014b) Natural convection in a nanofluid saturated rotating porous layer: a more realistic approach. Transp Porous Media 104(3):581–592

    Article  MathSciNet  Google Scholar 

  • Agarwal S, Bhadauria BS (2011) Natural convection in a nanofluid saturated rotating porous layer with thermal non equilibrium model. Transp Porous Media 90:627–654

    Article  MathSciNet  Google Scholar 

  • Agarwal S, Bhadauria BS (2013a) Flow patterns in linear state of Rayleigh–Bénard convection in a rotating nanofluid layer. Appl Nanosci 4(8):935–941

    Article  Google Scholar 

  • Agarwal S, Bhadauria BS (2013b) Weak nonlinear stability analysis of Rayleigh–Bénard convection in a rotating nanofluid layer. Nanomech Sci Technol Int J 4(3):251–266

    Article  Google Scholar 

  • Agarwal S, Bhadauria BS (2014a) Unsteady heat and mass transfer in a rotating nanofluid layer. Contin Mech Thermodyn 26:437–445

    Article  MathSciNet  Google Scholar 

  • Agarwal S, Bhadauria BS (2014b) Convective heat transport by longitudinal rolls in dilute nanoliquids. J Nanofluids 3(4):380–390

    Article  MathSciNet  Google Scholar 

  • Agarwal S, Rana P (2014) Convective transport in a binary nanofluid saturated porous layer. A nonlinear approach. J Comput Theor Nanosci (in press)

  • Agarwal S, Rana P, Bhadauria BS (2014) Rayleigh–Bénard convection in a nanofluid layer using a thermal non-equilibrium model. ASME J Heat Transf 136(12):122501

    Article  Google Scholar 

  • Bhadauria BS, Agarwal S, Kumar A (2011) Non-linear two-dimensional convection in a nanofluid saturated porous medium. Transp Porous Media 90(2):605–625

    Article  MathSciNet  Google Scholar 

  • Bhadauria BS, Agarwal S (2011) Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp Porous Media 88(1):107–131

    Article  MathSciNet  Google Scholar 

  • Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  • Choi S (1999) Nanofluid technology: current status and future research. Energy Technology Division, Argonne National Laboratory, Argonne

    Google Scholar 

  • Eastman JA, Choi SUS, Yu W, Thompson LJ (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  Google Scholar 

  • Ingham DB, Pop I (2005) Transport phenomena in porous media III. Elsevier, Oxford

    Google Scholar 

  • Keblinski P, Cahil DG (2005) Comments on model for heat conduction in nanofluids. Phys Rev Lett 95:209401

    Article  Google Scholar 

  • Kim MC, Lee SB, Kim S, Chung BJ (2003) Thermal instability of viscoelastic fluids in porous media. Int J Heat Mass Transf 46:5065–5072

    Article  MATH  Google Scholar 

  • Kuznetsov AV, Nield DA (2010a) Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman Model. Trans Porous Media 81:409–422

    Article  MathSciNet  Google Scholar 

  • Kuznetsov AV, Nield DA (2010b) Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp Porous Media 83:425–436

    Article  Google Scholar 

  • Malashetty MS, Shivakumara IS, Kulkarni S, Swamy M (2006) Convective instability of Oldroyd-B fluid saturated porous layer heated from below using a thermal non-equilibrium model. Transp Porous Media 64:123–139

    Article  MathSciNet  Google Scholar 

  • Nield DA, Kuznetsov AV (2009) Thermal instability in a porous medium layer saturated by nanofluid. Int J Heat Mass Transf 52:5796–5801

    Article  MATH  Google Scholar 

  • Nield DA, Kuznetsov AV (2010) The effect of local thermal non equilibrium on the onset of convection in a nanofluid. J Heat Transf 132:052405

    Article  Google Scholar 

  • Nield DA, Bejan A (2013) Convection in porous media, 4th edn. Springer, New York

    Book  MATH  Google Scholar 

  • Nield DA, Kuznetsov AV (2014) Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int J Heat Mass Transf 68:211–214

    Article  Google Scholar 

  • Rana P, Agarwal S (2014) Convection in a binary nanofluid saturated rotating porous layer. J Nanofluids 4(1):59–65

    Article  Google Scholar 

  • Rudraiah N, Kaloni PN, Radhadevi PV (1989) Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheol Acta 28:48–53

    Article  MATH  Google Scholar 

  • Sheu LJ (2011a) Linear stability of convection in a viscoelastic nanofluid layer. World Acad Sci Eng Technol 58:289–295

    MathSciNet  Google Scholar 

  • Sheu LJ (2011b) Thermal Instability in a porous medium layer saturated with a viscoelastic nanofluid. Transp Porous Media 88:461–477

    Article  MathSciNet  Google Scholar 

  • Tzou DY (2008a) Instability of nanofluids in natural convection. ASME J Heat Transf 130:072401

    Article  Google Scholar 

  • Tzou DY (2008b) Thermal instability of nanofluids in natural convection. Int J Heat Mass Transf 51:2967–2979

    Article  MATH  Google Scholar 

  • Umavathi JC, Mohite MB (2014) Convective transport in a porous medium layer saturated with a Maxwell nanofluid. J King Saud Univ Eng Sci (Published Online)

  • Vadasz P (2005) Nanofluids suspensions: possible explanations for the apparent enhanced effective thermal conductivity. ASMEpaper #HT2005-72258. In: Proceedings of 2005 ASME summer heat transfer conference, San Francisco, CA, 17–22 July 2005

  • Vadasz P (2006) Heat conduction in nanofluid suspensions. ASME J Heat Transf 128:465–477

    Article  Google Scholar 

  • Vafai K (2005) Handbook of porous media, 2nd edn. Taylor & Francis, New York

    Book  Google Scholar 

  • Yadav D, Agrawal GS, Bhargava R (2011) Thermal instability in rotating nanofluid. Int J Eng Sci 49:1171–1184

    Article  MathSciNet  Google Scholar 

  • Yadav D, Bhargava R, Agrawal GS (2012) Boundary and internal heat source effects on the onset of Darcy–Brinkman convection in a porous layer saturated by nanofluid. Int J Therm Sci 60:244–254

    Article  Google Scholar 

  • Yadav D, Bhargava R, Agrawal GS (2013a) Numerical solution of a thermal instability problem in a rotating nanofluid layer. Int J Heat Mass Transf 63:313–322

    Article  Google Scholar 

  • Yadav D, Agrawal GS, Bhargava R (2013b) The Onset of double-diffusive nanofluid convection in a layer of a saturated porous medium with thermal conductivity and viscosity variation. J Porous Media 16:105–121

    Article  Google Scholar 

  • Yadav D, Bhargava R, Agrawal GS, Yadav N, Lee J, Kim MC (2014) Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluid Nanofluidics 16(1–2):425–440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Rana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Rana, P. Thermal stability analysis of rotating porous layer with thermal non-equilibrium approach utilizing Al2O3–EG Oldroyd-B nanofluid. Microfluid Nanofluid 19, 117–131 (2015). https://doi.org/10.1007/s10404-015-1554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1554-8

Keywords

Navigation