Skip to main content
Log in

Effect of Local Thermal Non-equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is analytically studied. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. For the porous medium, the Darcy model is employed. The effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases is investigated using a three-temperature model. The analysis reveals that in some circumstances the effect of LTNE can be significant, but for a typical dilute nanofluid (with large Lewis number and with small particle-to-fluid heat capacity ratio) the effect is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

g :

Gravitational acceleration

g :

Gravitational acceleration vector

H :

Dimensional layer depth

k :

Thermal conductivity

K :

Permeability of the porous medium

Le :

Lewis number, defined by Eq. 20

N A :

Modified thermophoresis to Brownian-motion diffusivity ratio, defined by Eq. 24

N B :

Modified particle-density increment, defined by Eq. 25

N HP :

Nield number for the fluid/particle interface, defined by Eq. 26a

N HS :

Nield number for the fluid/solid-matrix interface, defined by Eq. 26b

p*:

Pressure

p :

Dimensionless pressure, p* K/μ α f

Ra :

Thermal Rayleigh–Darcy number, defined by Eq. 21

Rm :

Basic-density Rayleigh number, defined by Eq. 22

Rn :

Concentration Rayleigh number, defined by Eq. 23

t*:

Time

t :

Dimensionless time, t*α f/H 2

T*:

Temperature

T :

Dimensionless temperature, \({\frac{T^*-T^*_{\rm c}}{T^*_{\rm h}-T^*_{\rm c}}}\)

\({T^*_{\rm c}}\) :

Temperature at the upper wall

\({T^*_{\rm h}}\) :

Temperature at the lower wall

(u, v, w):

Dimensionless Darcy velocity components, (u*, v*, w*)H/α f

v :

Dimensionless Darcy velocity, \({H{\bf v}^*_{\rm D}/\alpha_{\rm f}}\)

\({{\bf v}^*_{\rm D}}\) :

Dimensional Darcy velocity, (u*, v*, w*)

(x, y, z):

Dimensionless Cartesian coordinates, (x*, y*, z*)/H; z is the vertically upward coordinate

(x*, y*, z*):

Cartesian coordinates

α f :

Thermal diffusivity of the fluid, \({\frac{k_{\rm f}}{(\rho c)_{\rm f}}}\)

β :

Volumetric expansion coefficient of the fluid

γ P :

Modified thermal capacity ratio defined by Eq. 27a

γ S :

Modified thermal capacity ratio defined by Eq. 27b

\({\varepsilon}\) :

Porosity

\({\varepsilon_{\rm P}}\) :

Modified thermal diffusivity ratio defined by Eq. 28a

\({\varepsilon_{\rm S}}\) :

Modified thermal diffusivity ratio defined by Eq. 28b

μ :

Viscosity of the fluid

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

(ρ c)f :

Heat capacity of the fluid

(ρ c)p :

Heat capacity of the particle material

(ρ c)s :

Heat capacity of the solid-matrix material

\({\phi^*}\) :

Nanoparticle volume fraction

\({\phi}\) :

Relative nanoparticle volume fraction, \({\frac{\phi^*-\phi^*_0}{\phi^*_1-\phi^*_0}}\)

*:

Dimensional variable

′:

Perturbation variable

b:

Basic solution

f:

Fluid phase

p:

Particle phase

s:

Solid-matrix phase

References

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006). doi:10.1115/1.2150834

    Article  Google Scholar 

  • Buongiorno, J., Hu, W.: Nanofluid coolants for advanced nuclear power plants, Paper no. 5705. In: Proceedings of ICAPP ‘05, Seoul (2005)

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, FED—vol. 231/MD—vol. 66, pp. 99–105. ASME, New York (1995)

  • Kuznetsov, A.V., Nield, D.A.: Thermal instability in a porous layer saturated by a nanofluid: Brinkman model. Transp. Porous Media (2009) (to appear)

  • Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7, 227–233 (1993)

    Google Scholar 

  • Nield D.A.: Effects of local thermal nonequilibrium in steady convective processes in a saturated porous medium: forced convection in a channel. J. Porous Media 1, 181–186 (1998)

    Google Scholar 

  • Nield, D.A., Kuznetsov, A.V.: The onset of convection in a nanofluid layer. ASME J. Heat Transf. (2009a) (submitted)

  • Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous layer saturated by a nanofluid. Int. J. Heat Mass Transf. (2009b) (to appear)

  • Nield, D.A., Kuznetsov, A.V.: The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. Int. J. Therm. Sci. (2009c) (to appear)

  • Tzou, D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130 (072401) (2008a)

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008). doi:10.1016/j.ijheatmasstransfer.2007.09.014

    Article  Google Scholar 

  • Vadasz P.: Heat conduction in nanofluid suspensions. ASME J. Heat Transf. 128, 465–477 (2006). doi:10.1115/1.2175149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V., Nield, D.A. Effect of Local Thermal Non-equilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid. Transp Porous Med 83, 425–436 (2010). https://doi.org/10.1007/s11242-009-9452-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9452-8

Keywords

Navigation