Skip to main content

Thermal Instability of Rivlin-Ericksen Elastico-Viscous Nanofluid Saturated by a Porous Medium with Rotation

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 666))

Abstract

The current article examines the thermal instability of a rotating porous layer saturated by a Rivlin-Ericksen elastico-viscous nanofluid using both nonlinear and linear ways. Nonlinear stability analysis is carried out using the truncated Fourier series method while normal mode methodology is utilized to perform to evaluation of linear stability analytically. The outcomes are all displayed graphically. The findings show that the concentration Rayleigh number, Lewis number, and modified diffusivity ratio promote the commencement of convective motion within the system. On the other hand, porosity, Darcy number, and rotation stabilize the system. The variation of the kinematic viscoelasticity parameter is found to have a substantial effect on the heat/mass transfer when Nusselt numbers are evaluated as a function of time. It has been determined that for stationary convection, the Rivlin-Ericksen elastico-viscous nanofluid fluid conducts just like a typical Newtonian nanofluid. The Taylor number affects the behaviour of heat/mass transfer, as increase the value of Taylor number mass and heat transfer decrease in the system, and found that Rivlin-Ericksen elastico-viscous nanofluid delays the commencement of convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivlin, R.S., Ericksen, J.L.: Stress-deformation relaxations for isotropic materials. J. Rat. Mech. Anal. 4, 323–425 (1955)

    MATH  Google Scholar 

  2. Srivastava, L.P.: Unsteady flow of Rivlin-Ericksen fluid with uniform distribution of dust particles through channels of different cross sections in the presence of time dependent pressure gradient. Istanbul Teknil Univer. Bul. 194, 19 (1971)

    Google Scholar 

  3. Sharma, R.C., Kumar, P.: Effect of rotation on thermal instability in Rivlin-Ericksen elastico-viscous fluid. Z. Naturforch. 51a, 821–824 (1996)

    Article  Google Scholar 

  4. Sharma, R.C., Kumar, P.: Thermal instability in Rivlin-Ericksen elastico-viscous fluid in hydromagnetics. Z. Naturforch. 52a, 369–371 (1997)

    Article  Google Scholar 

  5. Prakash, K., Chand, R.: Effect of kinematic visco-elasticity instability of a Rivlin-Ericksen elastico-viscous fluid in porous medium. Ganita Sandesh 14(1), 1–13 (1999)

    Google Scholar 

  6. Sharma, R.C., Kumar, P., Sharma, S.: Rayleigh-taylor instability of Rivlin-Ericksen elastico-viscous fluid through porous medium. Indian J. Phys. B 75(4), 337–340 (2001)

    Google Scholar 

  7. Kumar, P., Mohan, H., Lal, R.: Effect of magnetic field on thermal instability of a rotating Rivlin-Ericksen viscoelastic fluid. Int. J. Math. Math. Sci. 2006(3), 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sheu, L.J.: Thermal instability in a porous medium layer saturated with a visco-elastic nanofluid. Transp. Porous Med. 88, 461–477 (2011)

    Article  Google Scholar 

  9. Rana, G.C., Sharma, V.: Effect of rotation on the onset of convection in Rivlin-Ericksen fluid heated from below in a brinkman porous medium. Int. J. Fluid Mech. Res. 39(6) (2012)

    Google Scholar 

  10. Rana, G.C., Thakur, R.C.: Effect of suspended particles on thermal convection in Rivlin-Ericksen elastico-viscous fluid in a brinkman porous medium. J. Mech. Eng. Sci. 2, 162–171 (2012)

    Article  Google Scholar 

  11. Chand, R., Rana, G.C.: Thermal instability of Rivlin-Ericksen elastico-viscous nanofluid saturated by a porous medium. J. Fluids Eng. 134(12) (2012)

    Google Scholar 

  12. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)

    Article  Google Scholar 

  13. Chand, R., Rana, G.C., Singh, K.: Thermal instability in a Rivlin-Ericksen elasticoviscous nanofluid in a prous medium a revised model. Int. J. Nanosci. Nanoeng. 2(1), 1–5 (2015)

    Google Scholar 

  14. Rana, G.C., Chand, R., Sharma, V.: Thermal instability of a Rivlin-Ericksen nanofluid saturated by a Darcy-Brinkman porous medium: a more realistic model. Eng. Trans. 64(3), 271–286 (2016)

    Google Scholar 

  15. Saini, S., Sharma, Y.D.: The effect of vertical throughflow in Rivlin-Ericksen elastico-viscous nanofluid in a non-Darcy porous medium. Nanosyst. Phys. Chem. Math. 8(5), 606–612 (2017)

    Article  Google Scholar 

  16. Malleswari, D.: Influence of viscoelastic Rivlin-Ericksen fluid on free convective flow past a vertical plate filled in porous medium in presence of transverse magnetic field and double diffusion effects. 1OSR J. Appl. Phys. (1OSRJAP) 10(3), 45–62 (2018)

    Google Scholar 

  17. Kareem, R.A., Salawu, S.O., Yan, Y.: Analysis of Transient Rivlin-Ericksen Fluid and Irreversibility of Exothermic Reactive Hydromagnetic variable Viscosity. J. Appl. Comput. Mech. 6(1), 26–36 (2020)

    Google Scholar 

  18. Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Signier, D.A., Wang, H.P. (eds.) Development and Applications of Non-Newtonian Flows, pp. 99-105. ASME FED, New York (1995)

    Google Scholar 

  19. Choi, S.U.S., Eastman, J.A., Yu, W., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  20. Das, S.K., Putra, N., Thiesen, P., Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  21. Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  22. Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)

    Article  MATH  Google Scholar 

  23. Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  MATH  Google Scholar 

  24. Nield, D.A., Kuznetsov, A.V.: The effect of vertical through flow on thermal instability in a porous medium layer saturated by nanofluid. Transp. Porous Media 87, 765–775 (2011)

    Article  MathSciNet  Google Scholar 

  25. Nield, D.A., Kuznetsov, A.V.: The onset of double-diffusive convection in a nanofluid layer. Int. J. Heat Fluid Flow 32, 771–776 (2011)

    Article  Google Scholar 

  26. Bhadauria, B.S., Agarwal, S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87, 585–602 (2011)

    Article  MathSciNet  Google Scholar 

  27. Bhadauria, B.S., Agarwal, S., Kumar, A.: Non-linear two-dimensional convection in a nanofluid saturated porous. Media 90, 605–625 (2011)

    Google Scholar 

  28. Kuznetsov, A.V., Nield, D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83(2), 425–436 (2010)

    Article  Google Scholar 

  29. Bhadauria, B.S., Agarwal, S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87(2), 585–602 (2011)

    Article  MathSciNet  Google Scholar 

  30. Rashidi, M.M., Sheikholeslami, M., Hayat, T., Ganji, D.D.: Free convection of magnetic nanlofluid considering MFD viscosity effect. Int. J. Mol. Liq. 218, 393–399 (2016)

    Article  Google Scholar 

  31. Rawat, S.K., Mishra, A., Kumar, M.: Numerical study of thermal radiation and suction effects on copper and silver water nanofluids past a vertical Riga plate. J. MMMS 15, 714–736 (2019)

    Article  Google Scholar 

  32. Garia, R., Rawat, S.K., Kumar, M., Yaseen, M.: Hybrid nanofluid flow over two different geometries with Cattaneo-Christov heat flux model and heat generation: a model with correlation coefficient and probable error. Chin. J. Phys. 74, 421–439 (2021)

    Article  MathSciNet  Google Scholar 

  33. Gumber, P., Yaseen, M., Rawat, S.K., Kumar, M.: Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects. Partial Differ. Eqn. Appl. Math. 4, 100240 (2021)

    Google Scholar 

  34. Chand, R., Yadav, D., Bhattacharyya, K., Awasthi, M.K.: Thermal convection in a layer of micropolar nanofluid. Asia-Pac. J. Chem. Eng. 16(5), e2681 (2021)

    Article  Google Scholar 

  35. Geoffrey, T.: Experiments with rotating fluids. Proc. R. London A 100, 114–21 (1921)

    Article  MATH  Google Scholar 

  36. Greenspan, H.P.: The Theory of Rotating Fluid. Cambridge University Press, Cambridge (1968)

    MATH  Google Scholar 

  37. Kumar, P., Mohan, H., Lal, R.: The effect of magnetic field on thermal instability of a rotating viscoelastic fluid. Int. J. Math. Math. Sci. 28042, 1–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sunil, Chand, P., Bharti, P.K., Mahajan, A.: Thermal convection in micropolar ferrofluid in the presence of rotation. J. Magn. Mater. 320, 316–324 (2008)

    Google Scholar 

  39. Kirillov, O.N., Stefani, F.: The standard and helical magnetorotational instability. Acta Appl. Math. 120, 177–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yadav, D., Bhargava, R., Agrawal, G.S., Hwang, G.S., Lee, J., Kim, M.C.: Magneto-convection in a rotating layer of nanofluid. Asia-Pac. J. Chem. Eng. 9(5), 663–677 (2014)

    Article  Google Scholar 

  41. Chand, R., Rana, G.C.: Thermal instability in a rotating porous layer of nanofluid confined within a hele-shaw cell. J. Nanofluids 5(6), 941–948 (2016)

    Article  Google Scholar 

  42. Manjula, S.H., Kiran, P., RajReddy, P., Bhadauria, B.S.: The complex Ginzburg Landau model for an oscillatory convection in a rotating fluid layer. Int. J. Appl. Mech. Eng. 25(1), 75–91 (2020)

    Article  Google Scholar 

  43. Manjula, S.H., Kiran, P.: Thermo-rheological effect on weak nonlinear rayleigh-benard convection under rotation speed modulation. In: Boundary Layer Flows, pp. 01–20. IntechOpen (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ismail, Bhadauria, B.S. (2023). Thermal Instability of Rivlin-Ericksen Elastico-Viscous Nanofluid Saturated by a Porous Medium with Rotation. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2022. Lecture Notes in Networks and Systems, vol 666. Springer, Cham. https://doi.org/10.1007/978-3-031-29959-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29959-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29958-2

  • Online ISBN: 978-3-031-29959-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics