Skip to main content
Log in

Convective Transport in a Nanofluid Saturated Porous Layer With Thermal Non Equilibrium Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The effect of local thermal non-equilibrium on linear and non-linear thermal instability in a horizontal porous medium saturated by a nanofluid has been investigated analytically. The Brinkman Model has been used for porous medium, while nanofluid incorporates the effect of Brownian motion along with thermophoresis. A three-temperature model has been used for the effect of local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. The linear stability is based on normal mode technique, while for nonlinear analysis, a minimal representation of the truncated Fourier series analysis involving only two terms has been used. The critical conditions for the onset of convection and the heat and mass transfer across the porous layer have been obtained numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D B :

Brownian Diffusion coefficient

D T :

Thermophoretic diffusion coefficient

Da :

Darcy number

Pr :

Prandtl number

d :

Dimensional layer depth

k f :

Effective thermal conductivity of porous medium

k T :

Thermal diffusivity of porous medium

Le :

Lewis number

N A :

Modified diffusivity ratio

N B :

Modified particle-density increment

N HP :

Nield number for the fluid/particle interface

N HS :

Nield number for the fluid/solid-matrix interface

p :

Pressure

g :

Gravitational acceleration

Ra :

Thermal Rayleigh–Darcy number

Rm :

Basic density Rayleigh number

Rn :

Concentration Rayleigh number

t :

Time

T :

Nanofluid temperature

T c :

Temperature at the upper wall

T h :

Temperature at the lower wall

v :

Nanofluid velocity

v D :

Darcy velocity ε v

(x, y, z):

Cartesian coordinates

α f :

Thermal diffusivity of the fluid defined as \({\displaystyle\frac{k_{\rm f}}{(\rho c)_{\rm f}}}\)

β :

Proportionality factor

γ P :

Modified thermal capacity ratio

γ S :

Modified thermal capacity ratio

ε :

Porosity

ε P :

Modified thermal diffusivity ratio

ε S :

Modified thermal diffusivity ratio

μ :

Viscosity of the fluid

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

(ρc)f :

Heat capacity of the fluid

(ρc)s :

Heat capacity of the solid-matrix material

(ρc)p :

Heat capacity of the nanoparticle material

\({\phi}\) :

Nanoparticle volume fraction

ψ :

Stream function

b :

Basic solution

f :

Fluid phase

p :

Particle phase

s :

Solid-matrix phase

*:

Dimensional variable

′:

Perturbation variable

References

  • Agarwal, S., Bhadauria, B.S.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. STRPM 2(1) (2011)

  • Baytas A.C.: Thermal non-equilibrium natural convection in a square enclosure filled with a heat generating solid phase non-Darcy porous medium. Int. J. Energy Res. 27, 975–988 (2003)

    Article  Google Scholar 

  • Baytas A.C., Pop I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)

    Article  Google Scholar 

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Buongiorno, J., Hu, W.: Nanofluid coolant for advanced nuclear power plants. Paper No. 5705, In: Proceedings of ICAPP’05, Seoul (15–19 May, 2005)

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Development and applications of non-newtonian flows, ASME FED, vol. 231/MD vol. 66, 99–105 (1995)

  • Choi S.: Nanofluid Technology: Current Status And Future Research. Energy Technology Division, Argonne National Laboratory, Argonne (1999)

    Google Scholar 

  • Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  Google Scholar 

  • Horton W., Rogers F.T.: Convection currents in a porous medium. J. Appl. Phys. 16, 367–370 (1945)

    Article  Google Scholar 

  • Ingham D.B., Pop I.: Transport Phenomena in Porous Media. Pergamon, Oxford (1998)

    Google Scholar 

  • Ingham D.B., Pop I.: Transport Phenomena in Porous Media, vol. III. Elsevier, Oxford (2005)

    Google Scholar 

  • Keblinski P., Cahil D.G.: Comments on model for heat conduction in nanofluids. Phys. Rev. Lett. 95, 209401 (2005)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)

    Article  Google Scholar 

  • Kim J., Choi C.K., Kang Y.T., Kim M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Int. J. Refrig. 30, 323–328 (2007)

    Article  Google Scholar 

  • Kleinstreuer C., Li J., Koo J.: Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51, 5590–5597 (2008)

    Article  Google Scholar 

  • Kuznetsov A.V.: Thermal non-equilibrium forced convection in porous media. In: Ingham, D.B., Pop, I. (eds) Transport Phenomenon in Porous Media, pp. 103–130. Pergamon, Oxford (1998)

    Chapter  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp. Porous Med. 81, 409–422 (2010a)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Med. 83, 425–436 (2010b)

    Article  Google Scholar 

  • Lapwood E.R.: Convection of a fluid in a porous medium. Proc. Camb. Phil. Soc. 44, 508–521 (1948)

    Article  Google Scholar 

  • Malashetty M.S.: Anisotropic thermo convective effects on the onset of double diffusive convection in a porous medium. Int. J. Heat Mass Transf. 36, 2397–2401 (1993)

    Article  Google Scholar 

  • Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of Lapwood-Brinkman convection using a thermal nonequilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005a)

    Article  Google Scholar 

  • Malashetty M.S., Shivakumara I.S., Sridhar K.: The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Transp. Porous Med. 60, 199–215 (2005b)

    Article  Google Scholar 

  • Malashetty M.S., Swamy M.S., Heera R.: Double diffusive convection in a porous layer using a thermal non-equilibrium model. Int. J. Therm. Sci. 47, 1131–1147 (2008)

    Article  Google Scholar 

  • Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7, 227–233 (1993)

    Google Scholar 

  • Murray B.T., Chen C.F.: Double diffusive convection in a porous medium. J. Fluid Mech. 201, 147–166 (1989)

    Article  Google Scholar 

  • Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)

    Article  Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132, 052405 (2010)

    Article  Google Scholar 

  • Pop I., Ingham D.B.: Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

    Google Scholar 

  • Rees D.A.S., Pop I.: Local thermal non-equilibrium in porous medium convection. In: Ingham, D.B., Pop, I. (eds) Transport Phenomena in Porous Media, vol. III, pp. 147–173. Elsevier, Oxford (2005)

    Chapter  Google Scholar 

  • Rudraiah N., Malashetty M.S.: The influence of coupled molecular diffusion on the double diffusive convection in a porous medium. ASME J. Heat Transf. 108, 872–876 (1986)

    Article  Google Scholar 

  • Saeid N.H.: Analysis of mixed convection in a vertical porous layer using non-equilibrium model. Int. J. Heat Mass Transf. 47, 5619–5627 (2004)

    Article  Google Scholar 

  • Straughan B.: Global non-linear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. A462, 409–418 (2006)

    Google Scholar 

  • Tzou D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130, 072401 (2008)

    Article  Google Scholar 

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)

    Article  Google Scholar 

  • Vadasz, P.: Nanofluids suspensions: possible explanations for the apparent enhanced effective thermal conductivity. ASMEpaper #HT2005–72258. In: Proceedings of 2005 ASME Summer Heat Transfer Conference, San Francisco, 17–22 July 2005

  • Vadasz P.: Heat conduction in nanofluid suspensions. ASME J. Heat Transf. 128, 465–477 (2006)

    Article  Google Scholar 

  • Vadasz P.: Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, New York (2008)

    Book  Google Scholar 

  • Vafai K.: Handbook of Porous Media. Taylor and Francis, New York (2005)

    Book  Google Scholar 

  • Vafai K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadauria, B.S., Agarwal, S. Convective Transport in a Nanofluid Saturated Porous Layer With Thermal Non Equilibrium Model. Transp Porous Med 88, 107–131 (2011). https://doi.org/10.1007/s11242-011-9727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9727-8

Keywords

Navigation