Skip to main content
Log in

Thermal Instability in a Porous Medium Layer Saturated with a Viscoelastic Nanofluid

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The onset of convection in a horizontal layer of a porous medium saturated with a viscoelastic nanofluid was studied in this article. The modified Darcy model was applied to simulate the momentum equation in porous media. An Oldroyd-B type constitutive equation was used to describe the rheological behavior of viscoelastic nanofluids. The model used for the viscoelastic nanofluid incorporates the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was analytically derived. The effects of the concentration Rayleigh number, Prandtl number, Lewis number, capacity ratio, relaxation, and retardation parameters on the stability of the system were investigated. Oscillatory instability is possible in both bottom- and top-heavy nanoparticle distributions. Results indicated that there is competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity that causes the convection to set in through oscillatory rather than stationary modes. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

g :

Gravitational acceleration

g :

Gravitational acceleration vector

d :

Dimensional layer depth

k :

Thermal conductivity

K :

Permeability of the porous media

Le :

Lewis number, defined by Eq. 19

N A :

Modified thermophoresis to Brownian-motion diffusivity ratio defined by Eq. 25

N B :

Modified particle-density increment, defined by Eq. 26

p :

Pressure

q :

Velocity vector

q D :

Darcy velocity vector

R D :

Thermal Darcy–Rayleigh number, defined by Eq. 20

R M :

Basic-density Rayleigh number, defined by Eq. 21

R N :

Concentration Rayleigh number, defined by Eq. 22

t :

Time

T :

Temperature

T u :

Temperature at the upper wall

T l :

Temperature at the lower wall

(x, y, z):

Cartesian coordinates

α f :

Thermal diffusivity of a fluid

α m :

Average thermal diffusivity of a porous medium

β :

Volumetric thermal expansion coefficient

\({\varepsilon}\) :

Porosity

μ :

Viscosity

ρ f :

Density of a fluid

ρ p :

Density of nanoparticles

\({\phi }\) :

Nanoparticle volume fraction

S:

Stationary mode

Osc:

Oscillatory mode

*:

Dimensionless variable

′:

Perturbation variable

b:

Basic solution

C:

Critical value

f:

Fluid properties

p:

Particle properties

m:

Mean value of porous media

References

  • Bertola B., Cafaro E.: Thermal instability of viscoelastic fluids in horizontal porous layers as initial problem. Int. J. Heat Mass Transf. 49, 4003–4012 (2006)

    Article  Google Scholar 

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Chen H.S., Ding Y.L., Tan C.Q.: Rheological behaviour of nanofluids. New J. Phys. 9, 367 (2007a)

    Article  Google Scholar 

  • Chen H.S., Ding Y.L., He Y.R., Tan C.Q.: Rheological behaviour of ethylene glycol based titania nanofluids. Chem. Phys. Lett. 444, 333–337 (2007b)

    Article  Google Scholar 

  • Chen H.S, Ding Y., Lapkin A.: Rheological behaviour of nanofluids containing tube/rod-like nanoparticles. Power Technol. 194, 132–141 (2009)

    Article  Google Scholar 

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows, ASME FED-Vol. 231/MD-Vol. 66, pp. 99–105. ASME, New York (1995)

  • Eastman J.A., Choi S., Li S., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene-glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Kim M.C., Lee S.B., Chung B.J.: Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transf. 46, 5065–5072 (2003)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium saturated by a nanofluid: Brinkman model. Transp. Porous Media 81, 409–422 (2010)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 83, 425–436 (2010)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: The onset of a double diffusive nanofluid convection in a layer of saturated porous medium. Transp. Porous Media 85, 941–951 (2010)

    Article  Google Scholar 

  • Malashetty M.S., Shivakumara I.S., Kulkarni S., Swamy M.: Convective instability of Oldroyd B fluid saturated porous layer heated from below using a thermal nonequilibrium model. Transp. Porous Media 64, 123–139 (2006)

    Article  Google Scholar 

  • Malashetty M.S., Swamy M., Heera R.: The onset of convection in a binary viscoelastic fluid saturated porous layer. Z. Angew. Math. Mech. 89, 356 (2009)

    Article  Google Scholar 

  • Malashetty M.S., Tan W., Swamy M.: The onset of double diffusive convection in a binary viscoelastic fluid saturated anisotropic porous layer. Phys. Fluids 21, 084101 (2009)

    Article  Google Scholar 

  • Malashetty M.S., Swamy M.: The onset of double diffusive convection in a viscoelastic fluid layer. J. Non-Newtonian Fluid Mech. 165, 1129–1138 (2010)

    Article  Google Scholar 

  • Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei 7, 227–233 (1993)

    Google Scholar 

  • Nield, D.A.: A note on the onset of convection in a layer of a porous medium saturated by a non-Newtonian nanofluid of power-law type. Transp. Porous Media (2010). doi:10.1007/s11242-010-9671-z

  • Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B Fluids 29, 217–223 (2010)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The effect of local thermal non-equilibrium on the onset of convection in a nanofluid. ASME J. Heat Transf. 132, 052405 (2010)

    Article  Google Scholar 

  • Rudraiah N., Kaloni P.N., Radhadevi P.V.: Oscillatory convection in a viscoelastic fluid through a porous layer heated from below. Rheol. Acta 28, 48–52 (1989)

    Article  Google Scholar 

  • Schmidt A.J., Chiesa M., Torchinsky D.H., Johnson J.A., Boustani A., McKinley G.H., Nelson K.A., Chen G.: Experimental investigation of nanofluid shear and longitudinal viscosities. Appl. Phys. Lett. 92, 244107 (2008)

    Article  Google Scholar 

  • Sheu L.J., Tam L.M., Chen J.H., Chen H.K., Lin K.T., Kang Y.: Chaotic convection of viscoelastic fluid in porous medium. Chaos Solitons Fractals 37, 113–124 (2008)

    Article  Google Scholar 

  • Sheu L.J., Chen J.H., Chen H.K., Tam L.M., Chao Y.C.: A unified system describing dynamics of chaotic convection. Chaos Solitons Fractals 41, 123–130 (2009)

    Article  Google Scholar 

  • Tzou D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130, 072401 (2008)

    Article  Google Scholar 

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)

    Article  Google Scholar 

  • Vadasz P.: Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations. Int. J. Heat Mass Transf. 48, 2673–2683 (2005)

    Article  Google Scholar 

  • Vadasz P.: Heat conduction in nanofluid suspensions. ASME J. Heat Transf. 128, 465–477 (2006)

    Article  Google Scholar 

  • Wang S.W., Tan W.C.: Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys. Lett. A 372, 3046 (2008)

    Article  Google Scholar 

  • Yoon D.Y., Kim M.C., Choi C.K.: The onset of oscillatory convection in a horizontal porous layer saturated with viscoelastic liquid. Transp. Porous Media 55, 275–284 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jye Sheu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheu, L.J. Thermal Instability in a Porous Medium Layer Saturated with a Viscoelastic Nanofluid. Transp Porous Med 88, 461–477 (2011). https://doi.org/10.1007/s11242-011-9749-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9749-2

Keywords

Navigation