Skip to main content
Log in

Nonlinear Two-Dimensional Convection in a Nanofluid Saturated Porous Medium

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this article, we study the linear and nonlinear thermal instability in a horizontal porous medium saturated by a nanofluid. For this, the momentum equation with Brinkman model has been used. Also, it incorporates the effect of Brownian motion along with thermophoresis. The linear stability is based on normal mode technique, and for nonlinear analysis, the truncated Fourier series involving only two terms has been used. The expression of Rayleigh number for linear theory has been derived, and the effects of various parameters on Rayleigh number have been presented graphically. Weak nonlinear theory is used to find the concentration and the thermal Nusselt numbers. The behavior of the concentration and thermal Nusselt numbers is investigated and depicted graphically, by solving the finite amplitude equations using a numerical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

Da :

Darcy number

Pr :

Prandtl number

d :

Dimensional layer depth

k T :

Effective thermal conductivity of porous medium

k m :

Thermal diffusivity of porous medium

Le :

Lewis number

N A :

Modified diffusivity ratio

N B :

Modified particle-density increment

p :

Pressure

g :

Gravitational acceleration

Ra :

Thermal Rayleigh–Darcy number

Rm :

Basic density Rayleigh number

Rn :

Concentration Rayleigh number

t :

Time

T :

Temperature

T c :

Temperature at the upper wall

T h :

Temperature t the lower wall

v :

Nanofluid velocity

v D :

Darcy velocity \({\varepsilon \bf{v}}\)

(x*, y*, z*):

Cartesian coordinates

α :

Horizontal wave number

β :

Proportionality factor

\({\varepsilon }\) :

Porosity

μ :

Viscosity of the fluid

\({\bar\mu}\) :

Effective viscosity of the porous medium

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

(ρ c)f :

Heat capacity of the fluid

(ρ c)m :

Effective heat capacity of the porous medium

(ρ c)p :

Effective heat capacity of the nanoparticle material

γ :

Parameter defined as \({\frac{(\rho c)_{\rm m}}{(\rho c)_{\rm f}}}\)

\({\phi}\) :

Nanoparticle volume fraction

ν :

Kinematic viscosity μ/ρ f

ψ :

Stream function

α :

Wave number

ω :

Frequency of oscillation

b :

Basic solution

*:

Dimensional variable

’:

Perturbation variable

\({\nabla^2}\) :

\({\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}}\)

\({\nabla_1^2}\) :

\({\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}}\)

References

  • Agarwal S., Bhadauri B.S., Siddheshwar P.G.: Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Spec. Top. Rev. Porous Media 2(1), 53–64 (2011)

    Article  Google Scholar 

  • Bhadauria B.S.: Combined effect of temperature modulation and magnetic field on the onset of convection in an electrically conducting fluid saturated porous medium. ASME J. Heat Transf. 130(5), 052601–10526019 (2008)

    Article  Google Scholar 

  • Bhadauria B.S., Agarwal S.: Natural convection in a nanofluid saturated rotating porous layer: a nonlinear study. Transp. Porous Media 87(2), 585–602 (2011a)

    Article  Google Scholar 

  • Bhadauria B.S., Agarwal S.: Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp. Porous Media 88(1), 107–131 (2011b)

    Article  Google Scholar 

  • Buongiorno J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)

    Article  Google Scholar 

  • Buongiorno, J., Hu, W.: Nanofluid coolant for advanced nuclear power plants. In: Proceedings of ICAPP’05, Seoul, Paper No. 5705, May 15–19, 2005

  • Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Signier, D.A., Wang, H.P. (eds.) Development and Applications of Non-Newtonian Flows, ASME FED, vol. 231/MD-vol. 66, pp. 99–105. ASME, New York (1995)

  • Das S.K., Putra N., Thiesen P., Roetzel W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003a)

    Article  Google Scholar 

  • Das S.K., Putra N., Roetzel W.: Pool boiling characteristics of nanofluids. Int. J. Heat Mass Transf. 46, 851–862 (2003b)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  Google Scholar 

  • Eastman J.A., Choi S.U.S., Yu W., Thompson L.J.: Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34, 219–246 (2004)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Phys. Fluids 16, 2395–2401 (2004)

    Article  Google Scholar 

  • Kim J., Choi C.K., Kang Y.T., Kim M.G.: Effects of thermodiffusion and nanoparticles on convective instabilities in binary nanofluids. Nanoscale Microscale Thermophys. Eng. 10, 29–39 (2006)

    Article  Google Scholar 

  • Kim J., Kang Y.T., Choi C.K.: Analysis of convective instability and heat transfer characteristics of nanofluids. Int. J. Refrig. 30, 323–328 (2007)

    Article  Google Scholar 

  • Kleinstreuer C., Li J., Koo J.: Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. 51, 5590–5597 (2008)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Trans. Porous Media 81, 409–422 (2010a)

    Article  Google Scholar 

  • Kuznetsov A.V., Nield D.A.: Effect of local thermal non-equilibrium on the onset of convection in porous medium layer saturated by a nanofluid. Transp. Porous Medium 83, 425–436 (2010b)

    Article  Google Scholar 

  • Malashetty M.S., Tan W.C., Swamy M.: The onset of double diffusive convection in a binary viscoelastic fluid saturated anisotropic porous layer. Phys. Fluids 21, 084101 (2009)

    Article  Google Scholar 

  • Masuda H., Ebata A., Teramae K., Hishinuma N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra fine particles. Netsu Bussei 7, 227–233 (1993)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Thermal instability in a porous medium layer saturated by nonofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)

    Article  Google Scholar 

  • Nield D.A., Kuznetsov A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf. 132, 052405 (2010)

    Article  Google Scholar 

  • Savino R., Paterna D.: Thermodiffusion in nanofluids under different gravity conditions. Phys. Fluids 20, 017101 (2008)

    Article  Google Scholar 

  • Tzou D.Y.: Instability of nanofluids in natural convection. ASME J. Heat Transf. 130, 072401 (2008a)

    Article  Google Scholar 

  • Tzou D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008b)

    Article  Google Scholar 

  • Vassallo P., Kumar R., D’Amico S.: Pool boiling heat transfer experiments in silica-water nano-fluids. Int. J. Heat Mass Transf. 47, 407 (2004)

    Article  Google Scholar 

  • Veronis G.: Motions at subcritical values of the Rayleigh number in a rotating fluid. J. Fluid Mech. 24, 545–554 (1966)

    Article  Google Scholar 

  • Wurger A.: Heat capacity-driven inverse Soret effect of nanoparticles suspension. Europhys. Lett. 74, 658 (2006)

    Article  Google Scholar 

  • You S.M., Kim J.H., Kim K.H.: Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer. Appl. Phys. Lett. 83, 3374 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Bhadauria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhadauria, B.S., Agarwal, S. & Kumar, A. Nonlinear Two-Dimensional Convection in a Nanofluid Saturated Porous Medium. Transp Porous Med 90, 605–625 (2011). https://doi.org/10.1007/s11242-011-9806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9806-x

Keywords

Navigation