Skip to main content
Log in

Fine mapping of the region on wheat chromosome 7D controlling grain weight

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

We report the fine mapping of the previously described quantitative trait loci (QTL) for grain weight QTgw.ipk-7D associated with microsatellite marker Xgwm1002-7D by using introgression lines (ILs) carrying introgressions of the synthetic wheat W-7984 in the genetic background of the German winter wheat variety ‘Prinz’. The BC4F3 ILs had a 10% increased thousand grain weight compared to the control group and the recurrent parent ‘Prinz’, and 84.7% of the phenotypic variance could be explained by the segregation of marker Xgwm1002-7D, suggesting the presence of a gene modulating grain weight, which was preliminarily designated gw1. It was possible to delimit the QTL QTgw.ipk-7D to the interval Xgwm295–Xgwm1002, which is located in the most telomeric bin 7DS4-0.61-1.00 in the physical map of wheat chromosome arm 7DS. Furthermore, our data suggest the presence of a novel plant height-reducing locus Rht on chromosome arm 7DS of ‘Prinz’. Larger grain and increased plant height may reflect the pleiotropic action of one gene or may be caused by two linked genes. In general, our data support the concept of using nearly isogenic ILs for validating and dissecting QTLs into single Mendelian genes and open the gateway for map-based cloning of a grain-weight QTL in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitabo H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  PubMed  CAS  Google Scholar 

  • Börner A, Röder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kumar N (2006) Genetic and molecular basis of grain size and grain number and its relevance to grain productivity in higher plants. Genome 49:565–571

    Article  PubMed  Google Scholar 

  • He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci U S A 98:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Hossain KG, Kalavacharla V, Lazo GR, Hegstad J, Wentz MJ et al (2004) A chromosome bin map of 2148 expressed sequence tag loci of wheat homoeologous group 7. Genetics 168:687–699

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389

    PubMed  CAS  Google Scholar 

  • Huang XQ, Kempf H, Ganal MW, Röder MS (2004) Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109:933–943

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aesticum L.). Theor Appl Genet 113:753–766

    Article  PubMed  CAS  Google Scholar 

  • Li W, Gill BS (2004) Genomics for cereal improvement. In Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer, Dordrecht, The Netherlands, pp 585–634

    Google Scholar 

  • Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazak Y, Devos KM, Dubcovsky J, Rogers J, Appels R (2003) Catalogue of gene symbols for wheat. Available at: http://www.grs.nig.ac.jp/wheat/komugi/genes/

  • Narasimhamoorthy B, Gill BS, Fritz AK, Nelson JC, Brown-Guedira GL (2006) Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet 112:787–796

    Article  PubMed  CAS  Google Scholar 

  • Nelson J (1997) QGene: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci U S A 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Lapitan NLV (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96

    Article  PubMed  CAS  Google Scholar 

  • Pozzi C, Rossini L, Vecchietti A, Salamini F (2004) Gene and genome changes during domestication of cereals. In: Gupta PK, Varshney RK (eds) Cereal genomics. Kluwer, Dordrecht, The Netherlands, pp 585–634

    Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:298–303

    Article  Google Scholar 

  • Spielmeyer W, Ellis M, Robertson M, Ali S, Lenton JR, Chandler PM (2004) Isolation of gibberellin metabolic pathway genes from barley and comparative mapping in barley, wheat and rice. Theor Appl Genet 109:847–855

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetical-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113:619–629

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Song M-H, Jin F, Ahn, S-N, Suh J-P, Hwang H-G, McCouch SR (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113:885–894

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong, GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sonja Allner, Rosi Czihal, and Annett Heber for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion S. Röder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röder, M.S., Huang, XQ. & Börner, A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8, 79–86 (2008). https://doi.org/10.1007/s10142-007-0053-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-007-0053-8

Keywords

Navigation