Alaoui-Sosse B, Sehmer L, Barnola P, Diezengremel P (1998) Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., arhythmically growing species. Trees 12:424–430. https://doi.org/10.1007/PL00009726
Article
Google Scholar
Allen SE, Grimsha WHN, Parkinson JA, Quarmby C (1974) Chemical analysis of ecological materials. Blackwell Scientific Publications, Oxford
Google Scholar
Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees. Tree Physiol 14:843–843. https://doi.org/10.1093/treephys/14.7-8-9.843
Article
PubMed
Google Scholar
Al-Taey DK (2018) The role of GA and organic matter to reduce the salinity effect on growth and leaves contents of elements and antioxidant in pepper. Plant Arch 18:479–488
Google Scholar
Appleton BL, Greene V, Smith A, French S, Kane B, Fox L, Downing AK, Gilland T (2009) Trees and shrubs that tolerate saline soils and salt spray drift. Virginia Cooperative Extension, Publication, pp 430–031, Virginia Polytechnic Institute and State University, Blacksburg VA
Ashraf MPJC, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
CAS
Article
Google Scholar
Baczewska AH, Dmuchowski W, Jóźwiak A, Gozdowski D, Brągoszewska P, Dąbrowski P, Świeżewska E (2014) Effect of salt stress on prenyl lipids in the leaves of Crimean linden (Tilia ‘Euchlora’). Dendrobiology 72:177–186. https://doi.org/10.12657/denbio.072.015
Article
Google Scholar
Baczewska AH, Dmuchowski W, Puchalski J (2017) The effect of big city environment on urban trees growing in Warsaw. In: Ravnjak B, Bavcon J, Sharrock S (eds) Autochtonous plants in urban environment. University Botanic Garden, Ljubljana, pp 60–69
Google Scholar
Baetz U, Eisenach C, Tohge T, Martinoia E, De Angeli A (2016) Vacuolar chloride fluxes impact ion content and distribution during early salinity stress. Plant Physiol 172:1167–1181. https://doi.org/10.1104/pp.16.00183
CAS
Article
PubMed
PubMed Central
Google Scholar
Bajda A, Konopka-Postupolska D, Krzymowska M, Hennig J, Skorupinska-Tudek K, Surmacz L, Wo’jcik J, Matysiak Z, Chojnacki T, Skorzynska-Polit E, Drazkiewicz M, Patrzylas P, Tomaszewska M, Kania M, Swist M, Danikiewicz W, Piotrowska W, Swiezewska E, (2009) Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiol Plant 135:351–364. https://doi.org/10.1111/j.1399-3054.2009.01204.x
CAS
Article
PubMed
Google Scholar
Baraldi R, Przybysz A, Facini O, Pierdonà L, Carriero G, Bertazza G, Neri L (2019) Impact of drought and salinity on sweetgum tree (Liquidambar styraciflua L.): understanding tree ecophysiological responses in the urban context. Forests 10:1032. https://doi.org/10.3390/f10111032
Article
Google Scholar
Barrick WE, Davidson H (1980) Relative sodium chloride tolerance of common roadside trees in new hampshire. HortScience 25:203–205
Google Scholar
Bassuk N, Deanna FC, Marranca BZ, Barb N (2009) Recommended urban trees: Site assessment and tree selection for stress tolerance. Cornell University, Urban Horticulture Institute, Ithaca, New York
Google Scholar
Bayuelo-Jiménez JS, Debouck DG, Lynch JP (2003) Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crops Res 80:207–222. https://doi.org/10.1016/S0378-4290(02)00179-X
Article
Google Scholar
Benlloch M, Arboleda F, Barranco D, Fernandez-Escobar R (1991) Response of young olive trees to sodium and boron excess in irrigation water. HortScience 26:867–870. https://doi.org/10.21273/HORTSCI.26.7.867
CAS
Article
Google Scholar
Blomqvist G (1998) Impact of de-icing salt on roadside vegetation: A literature review. Swedish National Road and Transport Research Institute, VTI rapport 427A
Borowski J, Latocha P (2006) Trees and shrubs suitable for street conditions in warsaw and other cities in central Poland. Rocznik Dendrologiczny 54:83–93
Google Scholar
Breuste J, Qureshi S, Li J (2013) Applied urban ecology for sustainable urban environment. Urban Ecosyst. 16:675–680. https://doi.org/10.1007/s11252-013-0337-9
Article
Google Scholar
Brogowski Z, Zagórski Z, Czarnowska K, Chojnicki J, Pracz J (2000) Influence of salt stress on the chemical composition of tree leaves from the Łodź city area. Soil Sci Ann 51:17–28
CAS
Google Scholar
Cape JN, Freer-Smith PH, Paterson IS, Parkinson JA, Wolfenden J (1990) The nutritional status of Picea abies (L.) Karst. across Europe, and implications for ‘forest decline.’ Trees 4:211–224
Article
Google Scholar
Carpenter ED (1970) Salt tolerance of ornamental plants. Am Nurseryman 131:12–71
Google Scholar
Cekstere G, Nikodemus O, Osvalde A (2008) Toxic impact of the de-icing material to street greenery in Riga. Latvia Urban For Urban Green 7:207–217. https://doi.org/10.1016/j.ufug.2008.02.004
Article
Google Scholar
Cekstere G, Osvalde A, Vollenweider P (2016) De-icing salt impact on leaves of street trees (Tilia xvulgaris) in Riga. Latvia Acta Biol Univ Daugavpil 16:31–38
Google Scholar
Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15:186–194. https://doi.org/10.1007/s004680100091
CAS
Article
Google Scholar
Chen Z, Wang W, Liu T (2014) Effects of chemical deicers on the growth and vitality of Lolium perenne L. International Conference of Transportation Professionals, pp 2926–2936. https://DOI:https://doi.org/10.1061/9780784412442.298
Dąbrowski P, Pawluśkiewicz B, Kalaji HM, Baczewska AH (2013) The effect of light availability on leaf area index, biomass production and plant species composition of park grasslands in Warsaw. Plant Soil Environ 59:543–548. https://doi.org/10.1016/j.jlumin.2016.11.031
CAS
Article
Google Scholar
Dąbrowski P, Kalaji MH, Baczewska AH, Pawluśkiewicz B, Mastalerczuk G, Borawska-Jarmułowicz B, Paunov M, Goltsev V (2017) Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. J Lumin 183:322–333. https://doi.org/10.1016/j.jlumin.2016.11.031
CAS
Article
Google Scholar
Dadvand P, Bartoll X, Basagaña X, Dalmau-Bueno A, Martinez D, Ambros A, Cirach M, Triguero-Mas M, Gascon M, Borrell C, Nieuwenhuijsen MJ (2016) Green spaces and general health: roles of mental health status, social support, and physical activity. Environ Int 91:161–167. https://doi.org/10.1016/j.envint.2016.02.029
Article
PubMed
Google Scholar
Dauer JM, Chorover J, Chadwick OA, Oleksyn J, Tjoelker MG, Hobbie SE, Eissenstat DM (2007) Controls over leaf and litter calcium concentrations among temperate trees. Biogeochemistry 86:175–187. https://doi.org/10.1007/s10533-007-9153-8
CAS
Article
Google Scholar
De la Torre-Gonzalez A, Montesinos-Pereira D, Blasco B, Ruiz JM (2018) Influence of the proline metabolism and glycine betaine on tolerance to salt stress in tomato (Solanum lycopersicum L.) commercial genotypes. J Plant Physiol 231:329–336. https://doi.org/10.1016/j.jplph.2018.10.013
CAS
Article
PubMed
Google Scholar
De Vries W, Reinds GJ, van Kerkvoorde MS, Hendriks CMA, Leeters EEJM, Gross CP, Voogd JCH, Vel EM (2000) Intensive Monitoring of Forest Ecosystems in Europe, Technical Report, EC, UN/ECE 2000, Brussels, Geneva, 191 pp.
De Wit CT, Dijkshoorn W, Noggle JC (1963) Ionic balance and growth of plants. Versl. Landbouwkunde Onderzuk, Wageningen 69.1–66.
Devitt DA, Wright L, Landau F, Apodaca L (2014) Deicing salts; assessing distribution, ion accumulation in plants and the response of plants to different loading rates and salt mixtures. Environ Nat Resour Res 4:73–93. https://doi.org/10.5539/enrr.v4n1p73
Article
Google Scholar
Dirr MA (1976) Selection of trees for tolerance to salt injury. J Arboric 2:209–216
Google Scholar
Dmuchowski W, Baczewska AH, Brągoszewska P (2011) Reaction of street trees to adverse environmental conditions in the centre of Warsaw. Ecol Quest 15:97–105. https://doi.org/10.12775/v10090-011-0041-4
Article
Google Scholar
Dmuchowski W, Brogowski Z, Baczewska AH (2011) Evaluation of vigour and health of street trees in Warsaw using the foliar ionic status. Pol J Environ Stud 20:489–496
CAS
Google Scholar
Dmuchowski W, Baczewska AH, Gazdowski D, Brągoszewska P (2013) Effect of salt stress on the chemical composition of leaves of different trees species in urban environment. Fresenius Environ Bull 22:987–994
CAS
Google Scholar
Dmuchowski W, Gozdowski D, Baczewska AH, Rutkowska B, Szulc W, Suwara I, Brągoszewska P (2014) Effect of salt stress caused by deicing on the content of microelements in the leaves of linden. J Elem 19:65–79. https://doi.org/10.5601/jelem.2014.19.1.588
Article
Google Scholar
Dmuchowski W, Brągoszewska P, Gozdowski D, Baczewska-Dabrowska AB, Chojnacki T, Jozwiak A, Swiezewska E, Suwara I (2019) Strategy of Ginkgo biloba L. in the mitigation of salt stress in the urban environment. Urban For Urban Green 38:223–231. https://doi.org/10.1016/j.ufug.2019.01.003
Article
Google Scholar
Ekkel ED, de Vries S (2017) Nearby green space and human health: Evaluating accessibility metrics. Landsc Urban Plan 157:214–220. https://doi.org/10.1016/j.landurbplan.2016.06.008
Article
Google Scholar
Ellnain-Wojtaszek M, Kruczyński Z, Kasprzak J (2002) Variations in the free radical scavenging activity of Ginkgo biloba L. leaves in the period of complete development of green leaves to fall of yellow ones. Food Chem 79:79–84. https://doi.org/10.1016/S0308-8146(02)00181-4
CAS
Article
Google Scholar
Equiza MA, Calvo-Polanco M, Cirelli D, Señorans J, Wartenbe M, Saunders C, Zwiazek JJ (2017) Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban For Urban Green 21:16–28. https://doi.org/10.1016/j.ufug.2016.11.003
Article
Google Scholar
Farhangi-Abriz S, Ghassemi-Golezani K (2018) How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotox Environ Saf 147:1010–1016. https://doi.org/10.1016/j.ecoenv.2017.09.070
CAS
Article
Google Scholar
Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotox Environ Saf 137:64–70. https://doi.org/10.1016/j.ecoenv.2016.11.029
CAS
Article
Google Scholar
Feng YL, Zhai L, Gan Z, Zhang G, Yang S, Wang Y, Wu T, Zhang X, Xu X, Han Z (2018) Natural variation in cytokinin maintenance improves salt tolerance in apple rootstocks. Plant Cell Environ 42:424–436. https://doi.org/10.1111/pce.13403
CAS
Article
PubMed
Google Scholar
Flückiger W, Braun S (2003) Critical limits for concentrations and ratios for forest trees - a comment. https://www.iap.ch/publikationen/proceedings_cln_2003_p273-280.pdf. Accessed 01 Jan 2003
Genc Y, Oldach K, Taylor J, Lyons GH (2015) Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytol 210:145–156. https://doi.org/10.1111/nph.13757
CAS
Article
PubMed
Google Scholar
Gibbs JN, Palmer CA (1994) A survey of damage to roadside trees in London caused by the application of de-icing salt during the 1990/91 winter. Aboric J 18:321–343. https://doi.org/10.1080/03071375.1994.9747034
Article
Google Scholar
Goodrich BA, Jacobi WR (2012) Foliar damage, ion content, and mortality rate of five common roadside tree species treated with soil applications of magnesium chloride. Water Air Soil Pollut 223:847–862. https://doi.org/10.1007/s11270-011-0907-5
CAS
Article
Google Scholar
Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849. https://doi.org/10.1111/j.1365-3040.2005.01333.x
CAS
Article
Google Scholar
Grattan SR, Grieve CM (1999) Salinity-mineral nutrition relations in horticultural crops. Sci Hortic 78:127–157. https://doi.org/10.1016/S0304-4238(98)00192-7
CAS
Article
Google Scholar
Green SM, Machin R, Cresser MS (2008) Effect of long-term changes in soil chemistry induced by road salt applications on N transformations in roadside soils. Environ Pollut 152:20–31. https://doi.org/10.1016/j.envpol.2007.06.005
CAS
Article
PubMed
Google Scholar
Grote R, Samson R, Alonso R, Amorim JH, Cariñanos P, Churkina G, Fares S, Le Thiec D, Niinemets Ü, Norgaard Mikkelsen T, Paoletti E, Tiwary A, Calfapietra C (2017) Functional traits of urban trees: air pollution mitigation potential. Front Ecol Environ 14:543–550. https://doi.org/10.1002/fee.1426
Article
Google Scholar
Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genome. https://doi.org/10.1155/2014/701596
Article
Google Scholar
Hallett R, Johnson ML, Sonti NF (2018) Assessing the tree health impacts of salt water flooding in coastal cities: a case study in New York City. Landsc Urban Plan 177:171–177. https://doi.org/10.1016/j.landurbplan.2018.05.004
Article
Google Scholar
Hanslin HM (2011) Short-term effects of alternative de-icing chemicals on tree sapling performance. Urban For Urban Green 10:53–59. https://doi.org/10.1016/j.ufug.2010.08.001
Article
Google Scholar
Hermans C, Smeyers M, Rodriguez RM, Eyletters M, Strasser RJ, Delhaye JP (2003) Quality assessment of urban trees: a comparative study of physiological characterisation, airborne imaging and on site fluorescence monitoring by the OJIP-test. J Plant Physiol 160:81–90. https://doi.org/10.1078/0176-1617-00917
CAS
Article
PubMed
Google Scholar
Hu H, Fu Y, Yang Y, Chen S, Ning N (2019) Arabidopsis IAR4 modulates primary root growth under salt stress through ROS-mediated modulation of auxin distribution. Front Plant Sci 10:522. https://doi.org/10.3389/fpls.2019.00522
Article
PubMed
PubMed Central
Google Scholar
Ibata K, Mizuno M, Takigawa T, Tanaka Y (1983) Long-chain betulaprenol-type polyprenols from the leaves of Ginkgo biloba. Bioch J 213:305–311
CAS
Article
Google Scholar
Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marshal Dekar, Baten Rose, pp 897–910
Google Scholar
Jimenez-Casas M, Zwiazek JJ (2014) Adventitious sprouting of Pinus leiophylla in response to salt stress. Ann For Sci 71:811–819. https://doi.org/10.1007/s13595-014-0379-z
Article
Google Scholar
Johnson GR, Sucoff E (2000) Minimizing de-Icing salt injury to trees. Univ Minn, Extension Service, FO-1413-S
Jozwiak A, Brzozowski R, Bujnowski Z, Chojnacki T, Swiezewska E (2013) Application of supercritical CO2 for extraction of polyisoprenoid alcohols and their esters from plant tissues. J Lipid Res 54:2023–2028. https://doi.org/10.1194/jlr.D038794
CAS
Article
PubMed
PubMed Central
Google Scholar
Jozwiak A, Lipko A, Kania M, Danikiewicz W, Surmacz L, Witek A, Wojcik J, Zdanowski K, Pączkowski C, Chojnacki T, Poznanski J, Swiezewska E (2017) Modelling of dolichol mass spectra isotopic envelopes as a tool to monitor isoprenoid biosynthesis. Plant Physiol 174:857–874. https://doi.org/10.1104/pp.17.00036
CAS
Article
PubMed
PubMed Central
Google Scholar
Jull LG (2009) Winter salt injury and salt-tolerant landscape plants. Univ. Wisconsin Coop, Ext A, p 3877
Google Scholar
Kalaji HM, Račková L, Paganová V, Swoczyna T, Rusinowski S, Sitko K (2018) Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ Exp Bot 152:149–157. https://doi.org/10.1016/j.envexpbot.2017.11.001
CAS
Article
Google Scholar
Kayama M, Quoreshi AM, Kitaoka S, Kitahashi Sakamoto Y, Kitao M, Koike T (2003) Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst., and Picea glehnii Masters planted along roadsides in northern Japan. Environ Pollut 124:127–137. https://doi.org/10.1016/S0269-7491(02)00415-3
CAS
Article
PubMed
Google Scholar
Kobayashi Y, Yoshida J, Iwata H, Koyama Y, Kato J, Ogihara J, Kasumi T (2013) Gene expression and function involved in polyol biosynthesis of Trichosporonoides megachiliensis under hyper-osmotic stress. J Biosci Bioeng 115:645–650. https://doi.org/10.1016/j.jbiosc.2012.12.004
CAS
Article
PubMed
Google Scholar
Kopinga J, Van den Burg J (1995) Using soil and foliar analysis to diagnose the nutritional status of urban trees. J Arboric 21:17–24
Google Scholar
LaCroix RL, Keeney DR, Walsh LM (1970) Potentiometric titration of chloride in plant tissue extracts using the chloride ion electrode. Soil Sci Plant Anal 1:1–6. https://doi.org/10.1080/00103627009366233
CAS
Article
Google Scholar
Laffray X, Alaoui-Sehmer L, Bourioug M, Bourgeade P, Alaoui-Sossé B, Aleya L (2018) Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance. Environ Monit Assess 190:266. https://doi.org/10.1007/s10661-018-6645-z
CAS
Article
PubMed
Google Scholar
Lee DK, Song Y (2019) Urban green infrastructure and the ecological functions. Landsc Ecol Eng 15:241–243. https://doi.org/10.1007/s11355-019-00384-9
Article
Google Scholar
Leh HO (1990) Investigations on health conditions of street trees after discontinued use of de-icing salts on streets in Berlin. Nachr Dtsch Pflanzenschutzd 42:134–142
Google Scholar
Liu CS, Cheng Y, Hu JF, Zhang W, Chen NH, Zhang JT (2006) Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (EGb 761). Acta Pharmacol Sin 27:1137. https://doi.org/10.1111/j.1745-7254.2006.00378.x
CAS
Article
PubMed
Google Scholar
Llanes A, Reginato M, Devinar G, Luna V (2018) What is known about phytohormones in halophytes? A review. Biologia 73:727–742. https://doi.org/10.2478/s11756-018-0093-7
Article
Google Scholar
Loupassaki MH, Chartzoulakis KS, Digalaki NB, Androulakis II (2002) Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. J Plant Nutr 25:2457–2482. https://doi.org/10.1081/PLN-120014707
CAS
Article
Google Scholar
Lumis GP, Hofstra G, Hall R (1975) Salt damage to roadside plants. J Arboric 1:14–16
Google Scholar
Malik S, Nayak M, Sahu BB, Panigrahi AK, Shaw BP (2011) Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. Biol Plant 55:191–195
Article
Google Scholar
Mansour MMF (2013) Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant 57:1–10. https://doi.org/10.1007/s10535-012-0144-9
CAS
Article
Google Scholar
Marosz A (2012) Effect of green waste compost and mycorrhizal fungi on calcium, potassium, and sodium uptake of woody plants grown under salt stress. Water Air Soil Pollut 223:787–800. https://doi.org/10.1007/s11270-011-0902-x
CAS
Article
Google Scholar
Martin MP, Simmons C, Ashton MS (2016) Survival is not enough: The effects of microclimate on the growth and health of three common urban tree species in San Francisco, California. Urban For Urban Green 19:1–6. https://doi.org/10.1016/j.ufug.2016.06.004
Article
Google Scholar
Mazher AAM, Yassen AA, Zaghloul SM (2007) Influence of foliar application of potassium on growth and chemical composition of Bauhia variegate seedlings under different irrigation intervals. World J Agric Sci 3:23–31
Google Scholar
Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J For Res 131:1461–1472. https://doi.org/10.1007/s10342-012-0615-8
Article
Google Scholar
Milewska-Hendel A, Baczewska AH, Sala K, Dmuchowski W, Brągoszewska P, Gozdowski D, Jozwiak A, Chojnacki T, Swiezewska E, Kurczynska E (2017) Quantitative and qualitative characteristics of cell wall components and prenyl lipids in the leaves of Tilia xeuchlora trees growing under salt stress. PLoS ONE 12:e0172682. https://doi.org/10.1371/journal.pone.0172682
CAS
Article
PubMed
PubMed Central
Google Scholar
Moreira X, Sampedro L, Zas R (2009) Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate: concentration effect and systemic response. Environ Exp Bot 67:94–100. https://doi.org/10.1016/j.envexpbot.2009.05.015
CAS
Article
Google Scholar
Mousavi S, Regni L, Bocchini M, Mariotti R, Cultrera NG, Mancuso S, Googlani J, Chakerolhosseini MR, Guerrero C, Albertini E, Baldoni L, Proiett P (2019) Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Sci Rep 9:1093. https://doi.org/10.1038/s41598-018-37496-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Munck IA, Bennett CM, Camilli KS, Nowak RS (2010) Long-term impact of de-icing salts on tree health in the Lake Tahoe Basin: Environmental influences and interactions with insects and diseases. For Ecol Manag 260:1218–1229. https://doi.org/10.1016/j.foreco.2010.07.015
Article
Google Scholar
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
CAS
Article
PubMed
Google Scholar
Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
CAS
Article
PubMed
Google Scholar
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Physiol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
CAS
Article
Google Scholar
Musio M, von Wilpert K, Augustin NH (2007) Crown condition as a function of soil, site and tree characteristics. Eur J For Res 126:91–100. https://doi.org/10.1007/s10342-006-0132-8
Article
Google Scholar
Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236. https://doi.org/10.1016/j.envpol.2013.03.019
CAS
Article
PubMed
Google Scholar
Oleksyn J, Kloeppel BD, Łukasiewicz S, Karolewski P, Reich PB (2007) Ecophysiology of horse chestnut (Aesculus hippocastanum L.) in degraded and restored urban sites. Pol J Ecol 55:245–260
CAS
Google Scholar
Ordóñez-Barona C, Sabetski V, Millward AA, Steenberg J (2018) De-icing salt contamination reduces urban tree performance in structural soil cells. Environ Pollut 234:562–571. https://doi.org/10.1016/j.envpol.2017.11.101
CAS
Article
PubMed
Google Scholar
Paludan-Müller G, Saxe H, Pedersen LB, Randrup TB (2002) Differences in salt sensitivity of four deciduous tree species to soil or airborne salt. Physiol Plant 114:223–230. https://doi.org/10.1034/j.1399-3054.2002.1140208.x
Article
PubMed
Google Scholar
Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22:4056–4075. https://doi.org/10.1007/s11356-014-3739-1
CAS
Article
Google Scholar
Park BS, Lee SE, Kim MK, Kim YS, Lee HS (2000) Antioxidative activity of Ginkgo biloba leaves-derived components on free radicals and active oxygen species. Food Sci Biotech 9:317–321
Google Scholar
Pauleit S (2003) Urban street tree plantings: identifying the key requirements. Proc Inst Civ Eng Municipal Eng 156:43–50
Google Scholar
Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Rivière LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practice in towns and cities-Results from a European survey. Urban For Urban Green 1:83–96. https://doi.org/10.1078/1618-8667-00009
Article
Google Scholar
Pirasteh-Anosheh H, Ranjbar G, Pakniyat H, Emam Y (2016) Physiological mechanisms of salt stress tolerance in plants: an overview. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: responses and approaches to mitigate stress. Wiley, London, pp 141–160
Google Scholar
Plesa I, Al Hassan M, Sestras AF, Vicente O, Boscaiu M, Sestras RE (2018) Biochemical markers of salt stress in European larch (Larix decidua). Not Sci Biol 10:430–438. https://doi.org/10.15835/nsb10310322
CAS
Article
Google Scholar
Prietzel J, Rehfuess KE, Stetter U, Pretzsch H (2008) Changes of soil chemistry, stand nutrition, and stand growth at two Scots pine (Pinus sylvestris L.) sites in Central Europe during forty years after fertilization, liming, and lupine introduction. Eur J Forest Res 127:43–61. https://doi.org/10.1007/s10342-007-0181-7
CAS
Article
Google Scholar
Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kishor PK (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104–113. https://doi.org/10.1016/j.plaphy.2015.05.014
CAS
Article
PubMed
Google Scholar
Rose D, Weber J (2011) De-icing salt damage to Trees. Forest Research, Pathology Advisory Note, No 11
Roslinska M, Walinska K, Swiezewska E, Chojnacki T (2002) Plant long-chain polyprenols as chemotaxonomic markers. Dendrobiology 47:41–50
CAS
Google Scholar
Ryu H, Cho YG (2015) Plant hormones in salt stress tolerance. J Plant Biol 58:147–155. https://doi.org/10.1007/s12374-015-0103-z
CAS
Article
Google Scholar
Sæbø A, Benedikz T, Randrup TB (2003) Selection of trees for urban forestry in the Nordic countries. Urban For Urban Green 2:101–114. https://doi.org/10.1078/1618-8667-00027
Article
Google Scholar
Samson R, Ningal TT, Tiwary A, Grote R, Fares S, Saaroni H, Hiemstra JA, Zhiyanski M, Vilhar U, Cariñanos P, Järvi L, Przybysz A, Moretti M, Zürcher N (2017) Species-specific information for enhancing ecosystem services. In: Pearlmutter D, Calfapietra C, Samson R, O’Brien L, Ostoić SK, Sanesi G, del Amo RA (eds) The urban forest. Future City, Springer, Cham, pp 111–144 https://doi.org/10.1007/978-3-319-50280-9_12
Chapter
Google Scholar
Schumann K, Leuschner C, Schuldt B (2018) Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees 33:1475–1490. https://doi.org/10.1007/s00468-019-01874-x
CAS
Article
Google Scholar
Seamans GS (2013) Mainstreaming the environmental benefits of street trees. Urban For Urban Green 12:2–11. https://doi.org/10.1016/j.ufug.2012.08.004
Article
Google Scholar
Šerá B (2017) Salt-tolerant trees usable for Central European cities—review. Horti Sci 44:43–48. https://doi.org/10.17221/201/2015-HORTSCI
Article
Google Scholar
Serrano R, Rodriguez-Navarro A (2001) Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13:399–404. https://doi.org/10.1016/S0955-0674(00)00227-1
CAS
Article
PubMed
Google Scholar
Shelke DB, Nikalje GC, Nikam TD, Maheshwari P, Punita DL, Rao KRSS, Suprasanna P (2019) Chloride (Cl−) uptake, transport, and regulation in plant salt tolerance. In: Roychoudhury A, Tripathi D (eds) Molecular plant abiotic stress: biology and biotechnology. Wiley, pp 241–268https://doi.org/10.1002/9781119463665.ch13.
Shortle WC, Rich AE (1970) Relative sodium chloride tolerance of common roadside trees in New Hampshire. Plant Dis. Reptr. 54:360–362
Google Scholar
Sieghardt M, Mursch-Radlgruber E, Paoletti E, Couenberg E, Dimitrakopoulus A, Rego F, Hatzistathis A, Randrup TB (2005) The abiotic urban environment: impact of urban growing conditions on urban vegetation. In: Konijnendijk C, Nilsson K, Randrup T, Schipperij J (eds) Urban forests and trees. Springer, Berlin, Heidelberg, pp 281–323
Chapter
Google Scholar
Sienkiewicz-Paderewska D, Dmuchowski W, Baczewska AH, Brągoszewska P, Gozdowski D (2017) The effect of salt stress on the lime aphid abundance on the leaves of the Crimean linden (Tilia ’Euchlora’). Urban For Urban Green 21:74–79. https://doi.org/10.1016/j.ufug.2016.11.010
Article
Google Scholar
Silva PO, Medina EF, Barros RS, Ribeiro DM (2014) Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species. J Plant Physiol 171:14–22. https://doi.org/10.1016/j.jplph.2013.09.004
CAS
Article
PubMed
Google Scholar
Skorupinska-Tudek K, Wojcik J, Swiezewska E (2008) Polyisoprenoid alcohols - recent results of structural studies. Chem Rec 8:33–45. https://doi.org/10.1002/tcr.20137
CAS
Article
PubMed
Google Scholar
Storey R, Walker RR (1999) Citrus and salinity: a review. Sci Hortic (Netherlands) 78:39–81
CAS
Article
Google Scholar
Surowiecki P, Onysk A, Manko K, Swiezewska E, Surmacz L (2019) Long-Chain Polyisoprenoids are synthesized by AtCPT1 in Arabidopsis thaliana. Molecules 24:2789. https://doi.org/10.3390/molecules24152789
Article
PubMed Central
Google Scholar
Swiezewska E, Sasak W, Mankowski T, Jankowski W, Vogtman T, Krajewska I, Hertel J, Skoczylas E, Chojnacki T (1994) The search for plant polyprenols. Acta Biochim Pol 41:221–260
CAS
Article
Google Scholar
Tattini M, Ponzio C, Coradeschi MA, Tafani R, Traversi ML (1993) Mechanisms of salt tolerance in olive plants. Acta Hort 356:181–184
Google Scholar
TEEB-The Economics of Ecosystems and Biodiversity (2011) TEEB Manual for Cities: Ecosystem Services in Urban Management. http:/www.teebweb.org.
Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. https://doi.org/10.1093/aob/mcg058
CAS
Article
PubMed
PubMed Central
Google Scholar
Thornton FC, Schadle M, Raynal DJ (1988) Sensitivity of red oak (Quercus rubra L.) and American beech (Fagus grandiflora Ehrh.) seedlings to sodium salts in solution culture. Tree Physiol 4:167–172. https://doi.org/10.1093/treephys/4.2.167
CAS
Article
Google Scholar
Townsend AM (1984) Effect of sodium chloride on tree seedlings in two potting media. Environ Pollut Ser A, Ecol Biol 34:333–344. https://doi.org/10.1016/0143-1471(84)90111-9
CAS
Article
Google Scholar
Tyrväinen L, Pauleit S, Seeland K, de Vries S (2005) Benefits and uses of urban forests and trees. In: Konijnendijk C, Nilsson K, Randrup T, Schipperijn J (eds) Urban forests and trees. Springer, Berlin, pp 81–114
Chapter
Google Scholar
Ugolini F, Bussotti F, Lanini GM, Raschi A, Tani C, Tognetti R (2012) Leaf gas exchanges and photosystem efficiency of the holm oak in urban green areas of Florence, Italy. Urban For Urban Green 11:313–319. https://doi.org/10.1016/j.ufug.2012.02.006
Article
Google Scholar
van Beek TA, Montoro P (2009) Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A 1216:2002–2032. https://doi.org/10.1016/j.chroma.2009.01.013
CAS
Article
PubMed
Google Scholar
Tuil HDW, Lampe JEM, Dijkshoorn W (1964) The possibility of relating the ash alkalinity to the organic-salt content. Jaarbook, Inst. Biol. Scheik. Onderz.
Wageningen, 250:157–160
Van den Burg J (1974) Application of foliar analysis for young hardwood stands in the Netherlands. Nederlands Bosbouw Tidjschrift 46:225–243
Google Scholar
Vogt J, Gillner S, Hofmann M, Tharang A, Dettmann S, Gerstenberg T, Shmidt C, van de Riet K, Gebauer H, Berger U, Roloff A (2017) Citree: A database supporting tree selection for urban areas in temperate climate. Landsc Urban Plan 157:14–25. https://doi.org/10.1016/j.landurbplan.2016.06.005
Article
Google Scholar
Wang CZ, Yuan JJ, Li WJ, Zhang HY, Ye JZ (2015) In vivo and in vitro toxicity evaluation of polyprenols extracted from Ginkgo biloba L. leaves. Molecules 20:22257–22271. https://doi.org/10.3390/molecules201219839
CAS
Article
PubMed
PubMed Central
Google Scholar
Wu GQ, Feng RJ, Liang N, Yuan HJ, Sun WB (2015) Sodium chloride stimulates growth and alleviates sorbitol-induced osmotic stress in sugar beet seedlings. Plant Growth Regul 75:307–316. https://doi.org/10.1007/s10725-014-9954-4
CAS
Article
Google Scholar
Yokoi SB, Ray A (2002) Hasegawa P (2002) Salt stress tolerance of plants. JIRCAS Work Rep 23(01):25–33
CAS
Google Scholar
Zahradníková L, Schmidt Š, Sekretár S, Janáč L (2007) Determination of the antioxidant activity of Ginkgo biloba leaves extract. J Food Nutr Res 46:15–19
Google Scholar
Zhong M, Wang Y, Shu S, Sun J, Guo S (2020) Ectopic expression of CsTGase enhances salt tolerance by regulating polyamine biosynthesis, antioxidant activities and Na+/K+ homeostasis in transgenic tobacco. Plant Sci 296:110492. https://doi.org/10.1016/j.plantsci.2020.110492
CAS
Article
PubMed
Google Scholar
Zhou Q, Shi M, Zhu Z, Cheng L (2019) Ecophysiological responses of Carpinus turczaninowii L. to various salinity treatments. Forests 10:96. https://doi.org/10.3390/f10020096
Article
Google Scholar
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. https://doi.org/10.1104/pp.104.046367
CAS
Article
PubMed
PubMed Central
Google Scholar
Zimmerman EM, Jull LG (2006) Sodium chloride injury on buds of Acer platanoides, Tilia cordata, and Viburnum lantana. Arbor Urban For 32:45
Google Scholar
Ziska HL, DeJong TM, Hoffman GF, Mead RM (1991) Sodium and chloride distribution in salt-stressed Prunus salicina, a deciduous tree species. Tree Physiol 8:47–57. https://doi.org/10.1093/treephys/8.1.47
CAS
Article
PubMed
Google Scholar
Zwiazek JJ, Equiza MA, Karst J, Senorans J, Wartenbe M, Calvo-Polanco M (2019) Role of urban ectomycorrhizal fungi in improving the tolerance of lodgepole pine (Pinus contorta) seedlings to salt stress. Mycorrhiza 29:303–312. https://doi.org/10.1007/s00572-019-00893-3
Article
PubMed
Google Scholar