Skip to main content
Log in

Plant hormones in salt stress tolerance

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants, as a sessile organism, rely on the endogenous regulators for the modulation of growth and development under severe stress conditions for their survival. Plant hormones have long been considered as essential endogenous molecules involved in regulating plant development and tolerance or susceptibility of diverse stresses including salinity stress. Plants are frequently exposed to numerous adverse environmental factors such as drought, cold, heat and high salinity. Under high salinity, plants rapidly reduce the growth and developmental programs in response to the stress due to either the effects of specific ions on metabolism, or adverse water relations. Recent investigations on the functional roles of plant hormones in response to unfavorable environmental conditions have eventually unravel their potentials in coffering tolerance to such conditions including salinity stress. In this review, we will present recent progress of our understanding to the important role of plant hormones including abscisic acid (ABA), auxin, cytokinins (CK), brassinosteroids (BRs), jasmonate, gibberellin (GA) and ethylene for alleviation of salt stress in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van der Straeten D, Peng JR, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–941.

    Article  CAS  PubMed  Google Scholar 

  • Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–6601.

    CAS  PubMed  Google Scholar 

  • Akbari G, Sanavy SA, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pakistan J Biol Sci 10:2557–2561

    CAS  Google Scholar 

  • Ali Q, Athar HUR, Ashraf M (2008) Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. Plant Growth Regul 56:107–1161.

    CAS  Google Scholar 

  • Argueso CT, Ferreira FJ, Kieber JJ (2009) Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ 32:1147–1160

    CAS  PubMed  Google Scholar 

  • Barba-Espin G, Clemente-Moreno MJ, Alvarez S, Garcia-Legaz MF, Hernandez JA, Diaz-Vivancos P (2011) Salicylic acid negatively affects the response to salt stress in pea plants. Plant Biol 13:909–917

    CAS  PubMed  Google Scholar 

  • Cabot C, Sibole JV, Barcelo J, Poschenrieder C (2009) Abscisic Acid Decreases Leaf Na+ exclusion in salt-treated Phaseolus vulgaris L. J Plant Growth Regul 28:187–192

    CAS  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, Du BX, Zhang JS, Chen SY (2006) Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant Cell Environ 29:1210–1219

    CAS  PubMed  Google Scholar 

  • Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response: An overview. Plant Signal Behav 3:761–763

    PubMed Central  PubMed  Google Scholar 

  • Chakrabarti N, Mukherji S (2003) Alleviation of NaCl stress by pretreatment with phytohormones in Vigna radiata. Biol Plantarum 46:589–594

    CAS  Google Scholar 

  • Chang H, Jones ML, Banowetz GM, Clark DG (2003) Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Che P, Bussell JD, Zhou W, Estavillo GM, Pogson BJ, Smith SM (2010) Signaling from the endoplasmic reticulum activates brassinosteroid signaling and promotes acclimation to stress in Arabidopsis. Sci Signal 3:ra69

    PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng 27:141–177

    Article  CAS  Google Scholar 

  • Chourey K, Ramani S, Apte SK (2003) Accumulation of LEA proteins in salt (NaCl) stressed young seedlings of rice (Oryza sativa L.) cultivar Bura Rata and their degradation during recovery from salinity stress. J Plant Physiol 160:1165–1174

    CAS  PubMed  Google Scholar 

  • Chow B, McCourt P (2004) Hormone signalling from a developmental context. J Exp Bot 55:247–251

    CAS  PubMed  Google Scholar 

  • Colebrook EH, Thomas SG, Phillips AL, Hedden P (2014) The role of gibberellin signalling in plant responses to abiotic stress. J Exp Biol 217:67–75

    CAS  PubMed  Google Scholar 

  • Cramer G, Quarrie S (2002) Abscsic acid is correlated with the leaf growth inhibition of four genotypes of maize differing in their response to salinity. Functional Plant Biol 29:111–115

    CAS  Google Scholar 

  • Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • Dhaubhadel S, Chaudhary S, Dobinson KF, Krishna P (1999) Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol Biol 40:333–342

    CAS  PubMed  Google Scholar 

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotech 26:131–136

    CAS  Google Scholar 

  • Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151

    PubMed Central  PubMed  Google Scholar 

  • Du H, Wang N, Cui F, Li X, Xiao J, Xiong L (2010) Characterization of the beta-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by inreasing xanthophylls and abscisic acid synthesis in rice. Plant Physiol 154:1304–1318

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dunlap J, Binzel M (1996) NaCl reduces indole-3-acetic acid levels in the roots of tomato plants independent of stressinduced abscisic acid. Plant Physiol 112:379–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Mir BA, Yusuf M, Ahmad A (2013) Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiol Plant 35:2037–2053

    CAS  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hadiarto T, Tran LS (2011) Progress studies of drought-responsive gees in rice. Plant Cell Rep 30:297–310

    CAS  PubMed  Google Scholar 

  • Hao JJ, Yin YH, Fei SZ (2013) Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Reports 32:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA, van Staden J (1997) The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul 23:79–103

    CAS  Google Scholar 

  • He T, Cramer G (1996) Abscisic acid concentrations are correlated with leaf area reductions in two salt-stressed rapid cycling Brassica species. Plant Soil 179:25–33

    CAS  Google Scholar 

  • He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–91.

    CAS  PubMed  Google Scholar 

  • Hwang I, and Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–3891.

    Article  CAS  PubMed  Google Scholar 

  • Iqbal M, Ashraf M (2010) Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ Exp Bot 86:76–851.

    Google Scholar 

  • Iqbal M, Ashraf M, Jamil A (2006) Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul 50:29–391.

    CAS  Google Scholar 

  • Javid M.G., Sorooshzadeh, A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–7341.

    CAS  Google Scholar 

  • Jeon J, Kim NY, Kim S, Kang NY, Novak O, Ku SJ, Cho C, Lee DJ, Lee EJ, Strnad M (2010) A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J Biol Chem 285:23369–233841.

    Google Scholar 

  • Jung JH, Park CM (2011) Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal Behav 6:1198–1200

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kakimoto T (2003) Biosynthesis of cytokinins. J Plant Res 116:233–2391.

    CAS  PubMed  Google Scholar 

  • Kang D, Seo Y, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Lee I (2005) Jasmonic Acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–2821.

    CAS  Google Scholar 

  • Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann Bot-London 112:1655–16651.

    Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–311.

    CAS  PubMed  Google Scholar 

  • Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–4221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with1. enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    CAS  PubMed  Google Scholar 

  • Krishna P (2003) Brassinosteroid-mediated stress responses. J Plant Growth Regul 22:289–2971.

    CAS  PubMed  Google Scholar 

  • Lau S, Jurgens G, De Smet I (2008) The evolving complexity of the auxin pathway. Plant Cell 20:1738–17461.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li J, Brader G, Palva ET (2004) The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylatemediated signals in plant defense. Plant Cell 16:319–3311.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu WY, Wang MM, Huang J, Tang HJ, Lan HX, Zhang HS (2009) The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol 51:825–8331.

    CAS  PubMed  Google Scholar 

  • Lopez-Molina L, Mongrand B, McLachlin DT, Chait BT, and Chua NH (2002) ABI5 acts downstream of ABI3 to execute an ABAdependent growth arrest during germination. Plant J 32:317–3281.

    CAS  PubMed  Google Scholar 

  • Maggio A, Barbieri G, Raimondi G, De Pascale S (2010) Contrasting Effects of GA3treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul 29:63–721.

    CAS  Google Scholar 

  • Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT (2012) RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J Exp Bot 63:163–175

    PubMed Central  CAS  PubMed  Google Scholar 

  • Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M (2007) Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant J 51:1–17

    CAS  PubMed  Google Scholar 

  • Mockaitis K, and Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    CAS  PubMed  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annual Rev Plant Physiol Plant Mol Biol 52:89–118

    CAS  Google Scholar 

  • Moons A, De Keyser A, Van Montagu M (1997a) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197–204

    Article  CAS  PubMed  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997b) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    PubMed Central  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Rev Plant Biol 59:651–681

    CAS  Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898

    CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong FX, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama R, Le DT, Watanabe Y, Matsui A, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2012) Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. Plos One 7:e32124

    Article  Google Scholar 

  • Nishiyama R, Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T (2011) Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–2183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, Grebe M, Benfey PN, Sandberg G, Ljung K (2009) An auxin gradient and maximum in the Arabidopsis root apexshown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pospisilova J, Vagner M, Malbeck J, Travniakova A, Batkova P (2005) Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plantarum 49:533–540

    CAS  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    CAS  PubMed  Google Scholar 

  • Rao KP, Richa T, Kumar K, Raghuram B, Sinha AK (2010) In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice. DNA Res 17:139–153

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids- A new class of phytohormones. Curr Sci India 82:1239–1245

    Google Scholar 

  • Ryu, H, Hwang I (2013) Brassinosteroids in plant developmental signaling networks. J Plant Biol 56:267–273

    CAS  Google Scholar 

  • Saeng-ngam S., Takpirom W., Buaboocha T., S. C (2012) The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55:198–208

    CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. EXP Bot 58:221–227

    CAS  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annual Rev Plant Biol 55:197–223

    CAS  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152

    CAS  PubMed  Google Scholar 

  • Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2010) Role of cytokinin responsive two-component system in ABA and osmotic stress signalings. Plant Signal Behav 5:148–150

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    CAS  PubMed  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    CAS  PubMed  Google Scholar 

  • Wang YN, Liu C, Li KX, Sun FF, Hu HZ, Li X, Zhao YK, Han CY, Zhang WS, Duan YF (2007) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol Biol 64:633–644

    CAS  PubMed  Google Scholar 

  • Wang YN, Wang T, Li KX, Li X (2008) Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress. Plant Growth Regul 54:261–269

    Google Scholar 

  • Werner T, Kollmer I, Bartrina I, Holst K, Schmulling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. TAG. Theor Appl Genet 115:35–46

    CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14 Suppl:S165–183

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye H, Du H, Tang N, Li X, Xiong L (2009) Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Mol Biol 71:291–305

    CAS  PubMed  Google Scholar 

  • Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoon J, Hamayun M, Lee S, Lee I (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotech 12:63–68

    Google Scholar 

  • Zahir ZA, Asghar HN, Arshad M (2001) Cytokinin and its precursors for improving growth and yield of rice. Soil Biol Biochem 33:405–408

    CAS  Google Scholar 

  • Zdunek E, Lips SH (2001) Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions. J Exp Bot 52:1269–1276

    CAS  PubMed  Google Scholar 

  • Zhang SS, Cai ZY, Wang XL (2009) The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc Natl Acad Sci USA 106:4543–4548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou HL, Cao WH, Cao YR, Liu J, Hao YJ, Zhang JS, Chen SY (2006) Roles of ethylene receptor NTHK1 domains in plant growth, stress response and protein phosphorylation. FEBS Lett 580:1239–12501.

    CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annual Rev Plant Biol 53:247–273

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Gu Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, H., Cho, YG. Plant hormones in salt stress tolerance. J. Plant Biol. 58, 147–155 (2015). https://doi.org/10.1007/s12374-015-0103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0103-z

Keywords

Navigation