Skip to main content
Log in

Adventitious sprouting of Pinus leiophylla in response to salt stress

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Although adventitious shoots are produced in many tree species in response to injury, little is known about the effects of salinity on sprouting.

Aims

The main objective was to examine the sprouting capacity of Pinus leiophylla seedlings in relation to injury and physiological changes induced by NaCl.

Methods

Seedlings were grown in controlled-environment growth rooms and treated with 0, 100, 150, and 200 mM NaCl. Numbers of adventitious shoots were recorded and growth and physiological parameters measured after 64 days of treatments and following a 30-day recovery period.

Results

NaCl treatments triggered sprouting of adventitious shoots, mainly in the lower parts of the stems. However, fewer sprouts were induced by 200 mM NaCl compared with the lower concentration treatments. These changes were accompanied by needle necrosis, decreased chlorophyll concentrations, seedling dry mass, and stem diameter. Stomatal conductance, net photosynthesis, and root hydraulic conductance decreased with increasing NaCl concentrations and did not return to the control levels after 30 days of stress relief.

Conclusions

Pinus leiophylla has the regeneration potential when exposed to salinity. However, very high salt concentrations induce severe physiological impairments and, consequently, a decrease of this regeneration potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alix-García J, De Janvry A, Sadoulet E (2005) A Tale of two communities: explaining deforestation in Mexico. World Dev 33:219–235

    Article  Google Scholar 

  • Allen JA, Chambers JL, Stine M (1994) Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiol 14:843–853

    Article  PubMed  Google Scholar 

  • Apostol GK, Zwiazek JJ (2003) Hypoxia affects root sodium and chloride concentrations and alter water conductance in salt-treated jack pine (Pinus banksiana) seedlings. Trees 17:251–257

    Google Scholar 

  • Apostol GK, Zwiazek JJ, MacKinon DM (2002) NaCl and Na2SO4 alter responses of jack pine (Pinus banksiana) seedlings to boron. Plant Soil 240:321–329

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Barton AM (2005) Response of Arbutus arizonica (Arizona madrone) to fire in Southeastern Arizona. Southwest Nat 50:7–11

    Article  Google Scholar 

  • Bettenay E (1986) Salt affected soils in Australia. Reclam Reveget Res 5:167–179

    Google Scholar 

  • Bowes BG (1996) A color atlas of plant structure. Manson Publishing Ltd, London

    Google Scholar 

  • Calvo Polanco M, Zwiazek JJ, Jones MD, MacKinnon MD (2008) Responses of mycorrhizal jack pine (Pinus banksiana) seedlings to NaCl and boron. Trees 22:825–834

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Jones MD, Zwiazek JJ (2009) Effects of pH on NaCl resistance of American elm (Ulmus americana) seedlings inoculated with Hebeloma crustuliniforme and Laccaria bicolor. Acta Physiol Plant 31:515–522

    Article  CAS  Google Scholar 

  • Chomba BM, Guy RD, Weger HG (1993) Carbohydrate reserve accumulation and depletion in Engelmann spruce (Picea engelmannii Parry): effects of cold storage and pre-storage CO2 enrichment. Tree Physiol 13:351–364

    Article  CAS  PubMed  Google Scholar 

  • Climent J, Tapias R, Pardos JA, Gil L (2004) Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol 171:185–196

    Article  Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Rev 57:318–358

    Article  Google Scholar 

  • Del Tredici P (2001) Sprouting in temperate trees: a morphological and ecological review. Bot Rev 67:121–140

    Article  Google Scholar 

  • Eguiluz-Piedra T (1978) Ensayo de integración de los conocimientos sobre el genero Pinus en México. Dissertation Universidad Chapingo, México

    Google Scholar 

  • Epstein E (1972) Mineral nutrition of plants: principle and perspectives. Wiley, New York

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Ezcurra E (1991) The basin of Mexico. In: Turner BL (ed) The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. Cambridge, New York, pp 577–588

    Google Scholar 

  • Fostad O, Pedersen PA (2000) Container-grown tree seedling responses to sodium chloride applications in different substrates. Environ Pollut 109:203–210

    Article  CAS  PubMed  Google Scholar 

  • Franklin JA, Zwiazek JJ (2004) Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulfate. Physiol Plant 120:482–490

    Article  CAS  PubMed  Google Scholar 

  • Harrington CA (1984) Factors influencing sprouting of red alder. Can J For Res 14:357–361

    Article  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hiscox JD, Irsaelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Jasso-Mata J, Jiménez-Casas M (2001) Resistencia y control de una plaga en un huerto semillero sexual de Pinus leiophylla Schl. et Cham. In Resumenes: V Congreso Mexicano de Recursos Forestales. 7-9 Nov. Guadalajara, Jal. México 237 pp

  • Jimenez-Casas M, Zwiazek JJ (2013) Effects of branch pruning and seedling size on total transpiration and tissue Na and Cl accumulation in Pinus leiophylla seedlings exposed to salinity. Forest Sci 59:407–415

    Article  Google Scholar 

  • Lanner RM (2002) Why do trees live so long? Ageing Res Rev 1:653–671

    Article  PubMed  Google Scholar 

  • Loustau D, Crepeau S, Guye GM, Sartore M, Saur E (1995) Growth and water relations of three geographically separate origins of maritime pine (Pinus pinaster) under saline conditions. Tree Physiol 15:569–576

    Article  PubMed  Google Scholar 

  • Masera O (1996) Desforestación y Degradación Forestal en México. Grupo Interdisciplinario de Tecnología Rural Apropiada GIRA AC. Michoacán, México

    Google Scholar 

  • Mooney JA, Hayes RI (1973) Carbohydrate storage cycles in two California Mediterranean-climate trees. Flora, Jena 162:295–304

    CAS  Google Scholar 

  • Moreira F, Catry F, Duarte I, Acácio V, Silva JS (2009) A conceptual model of sprouting responses in relation to fire damage: an example with cork oak (Quercus suber L) trees in Southern Portugal. Plant Ecol 201:77–85

    Article  Google Scholar 

  • Muhsin T, Zwiazek JJ (2002) Ectomycorrhizae increase water conductance and protect white spruce (Picea glauca) seedlings against salt stress. Plant Soil 238:217–225

    Article  CAS  Google Scholar 

  • Musálem MA and Martínez-García S (2003) Monografía de Pinus leiophylla Schl. et Cham. Proyecto de investigación manejo sustentable y conservación de la biodiversidad de los bosques de clima templado y frío de México. INIFAP. Chapingo, México

  • Navarro A, Bañon S, Olmos E, Sánchez-Blanco MJ (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Sci 172:473–480

    Article  CAS  Google Scholar 

  • O’Hara KL, York RA, Heald RC (2008) Effect of pruning severity and timing of treatment on epicormic sprout development in giant sequoia. Forestry 81:103–110

    Article  Google Scholar 

  • Ortiz O M (1993) Distribución y extensión de los suelos afectados por sales en México y en el mundo. Publicaciones del departamento de suelos, UACh, Chapingo, México

  • Perry JP (1991) The pines of Mexico and Central America. Timber, Portland Oregon

    Google Scholar 

  • Quine CP (2004) Development of epicormic sprouts on Sitka spruce stems in response to windthrown gap formation. Forestry 3:225–233

    Article  Google Scholar 

  • Renault S (2005) Tamarack response to salinity: effects of sodium chloride on growth and ion, pigment, and soluble carbohydrate levels. Can J For Res 35:2806–2812

    Article  Google Scholar 

  • Renault S, Croser C, Franklin JA, Zwiazek JJ (2001) Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx.) seedlings. Plant Soil 233:261–268

    Article  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Robinson MF, Anne-Alienor V, Sanders D, Mansfield TA (1997) How can stomata contribute to salt tolerance? Ann Bot 80:387–393

    Article  CAS  Google Scholar 

  • Rodríguez-Franco C (2002) Pinus leiophylla Schtdl. & Cham. In: CAB international (ed) Pines of silvicultural importance. CABI publishing, Wallingford, pp pp 202–pp 205

    Google Scholar 

  • Rodríguez-Trejo DA, Fulé PZ (2003) Fire ecology of Mexican pines and fire management proposal. Int J Wildland Fire 12:23–37

    Article  Google Scholar 

  • SAS institute Inc. (2001) SAS/PC system for windows. Version 8.2. SAS Institute, Cary, NC, USA

  • Segura G (2000) Mexico’s forest sector and policies: a general perspective. In: Constituting the commons: crafting sustainable commons in the New Millennium, the eighth conference of the international association for the study of common property, Bloomington, IN, pp 27

  • Tyree MT, Patiño S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Vest PA, Westoby M (2004) Sprouting ability across diverse disturbances and vegetation types worldwide. J Ecol 92:310–320

    Article  Google Scholar 

  • Wan X, Landhäusser SM, Lieffers VJ, Zwiazek JJ (2006) Signals controlling root suckering and adventitious shoot formation in aspen (Populus tremuloides). Tree Physiol 26:681–687

    Article  PubMed  Google Scholar 

  • Wan XH, Kent M, Fang XF (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration. For Ecol Manag 245:76–87

    Article  Google Scholar 

  • White JB (1981) The influence of seedling size and length of storage on longleaf pine survival. Tree Planter’s Notes 1:3–4

    Google Scholar 

Download references

Acknowledgments

We thank the Natural Sciences and Engineering Research Council of Canada and the Mexican Consejo Nacional de Ciencia y Tecnologia (CONACyT) and Colegio de Postgraduados for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz J. Zwiazek.

Additional information

Handling Editor: Erwin Dreyer

Contribution of the co-authors

Jimenez-Casas carried out the PhD research project and drafted the manuscript. Zwiazek co-designed and supervised the research and prepared the manuscript for submission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Casas, M., Zwiazek, J.J. Adventitious sprouting of Pinus leiophylla in response to salt stress. Annals of Forest Science 71, 811–819 (2014). https://doi.org/10.1007/s13595-014-0379-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-014-0379-z

Keywords

Navigation