Skip to main content
Log in

Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5–8-fold), potassium (0.6-fold), and chloride (9.5–14-fold) concentrations in the root tips while the K+/Na+ ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alaoui-Sossé, B., Sehmer, L., Barnola, P., & Dizengremel, P. (1998). Effect of NaCl salinity on growth and mineral partitioning in Quercus robur L., a rhythmically growing species. Trees – Struct Funct, 12, 424–430.

    Google Scholar 

  • Astebol, S. O., Pedersen, P. A., Rohr, P. K., Fostad, O., & Soldal, O. (1996). Effects of de-icing salts on soil water and vegetation. Report MITRA, Oslo: Norwegian National Road Administration 63 pp.

    Google Scholar 

  • Bäckström, M., Karlsson, S., Backman, L., Folkeson, L., & Lind, B. (2004). Mobilisation of heavy metals by deicing salts in a roadside environment. Water Research, 38, 720–732.

    Article  Google Scholar 

  • Bogemans, J., Neirinckx, L., & Stassart, J. M. (1989). Effect of deicing chloride salts on ion accumulation in spruce (Picea abies L. sp.). Plant and Soil, 113, 3–11.

    Article  CAS  Google Scholar 

  • Bohnert, H. J., Nelson, D. E., & Jensen, R. G. (1995). Adaptations to environmental stresses. Plant Cell, 7, 1099–1111.

    Article  CAS  Google Scholar 

  • Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103, 551–560.

    Article  CAS  Google Scholar 

  • Epron, D., Toussaint, M. L., & Badot, P. M. (1999). Effects of sodium chloride salinity on root growth and respiration in oak seedlings. Annals of Forest Science, 56, 41–47.

    Article  Google Scholar 

  • Fries, J., & Getrost, H. (1977). Organic reagents for trace analysis. Darmstadt: E. Merck.

    Google Scholar 

  • Fusaro, L., Mereu, S., Brunetti, C., Di Ferdinando, M., Ferrini, F., Manes, F., Salvatori, E., Marzuoli, R., Gerosa, G., & Tattini, M. (2014). Photosynyhetic performance and biochemical adjustments in two co-occurring Mediterranean evergreens, Quercus ilex and Arbutus unedo, differing in salt-exclusion ability. Functional Plant Biology, 41, 391–400.

    Article  CAS  Google Scholar 

  • Gadallah, M. A. A. (1996). Abscisic acid, temperature and salinity interactions on growth and some mineral elements in Carthamus plants. Plant Growth Regulation, 20, 225–236.

    Article  CAS  Google Scholar 

  • Getz, H. P. (1991). Activity of cell wall bound acid invertase of mature red beet tissue. Plant Physiology and Biochemistry, 29, 585–593.

    CAS  Google Scholar 

  • Gibbs, J. N., & Palmer, C. A. (1994). A survey of damage to roadside trees in London caused by the application of de-icing salt during the 1990/1991 winter. Arboric J, 18, 321–343.

    Article  Google Scholar 

  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.

    Article  CAS  Google Scholar 

  • Hodge, A., Berta, G., Doussan, C., Merchan, F., & Crespi, M. (2009). Plant root growth, architecture and function. Plant and Soil, 321, 153–187.

    Article  CAS  Google Scholar 

  • Houska, C. (2007). Deicing salt–recognising the corrosion threat. Pittsburgh, TMR Consulting: International Molybdenum Association.

    Google Scholar 

  • Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51, 1595–1616.

    Article  CAS  Google Scholar 

  • Jones, M. G. K., Outlaw, W. H., & Lowry, O. H. (1977). Enzymic assay of 10−7 to 10−14 moles of sucrose in plant tissues. Plant Physiology, 60, 379–383.

    Article  CAS  Google Scholar 

  • Khan, M. S., Ahmad, D., & Khan, M. A. (2015). Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electronic Journal of Biotechnology, 18, 257–266.

    Article  CAS  Google Scholar 

  • Leigh, R. A., & Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in plant cell. The New Phytologist, 97, 1–13.

    Article  CAS  Google Scholar 

  • Lundmark, A., & Olofsson, B. (2007). Chloride deposition and distribution in soils along a deiced highway—assessment using different methods of measurement. Water, Air, and Soil Pollution, 182, 173–185.

    Article  CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Moghaieb, R. E. A., Saneoka, H., & Fujita, K. (2004). Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Science, 166, 1345–1349.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Negrào, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119, 1–11.

    Article  Google Scholar 

  • Niu, G., Xu, W., Rodriguez, D., & Sun, Y. (2012). Growth and physiological responses of maize and sorghum genotypes to salt stress. ISRN Agron, 2012, 1–12. https://doi.org/10.5402/2012/145072.

    Article  Google Scholar 

  • Norrström, A. C., & Bergstedt, E. (2001). The impact of road de-icing salts (NaCl) on colloid dispersion and base cation pools in roadside soils. Water, Air, and Soil Pollution, 127, 281–299.

    Article  Google Scholar 

  • Paludan-Müller, G., Saxe, H., Pedersen, L. B., & Randrup, T. B. (2002). Differences in salt sensitivity of four deciduous tree species to soil or airborne salt. Physiologia Plantarum, 114, 223–230.

    Article  Google Scholar 

  • Pedersen, L. B., Randrup, T. B., & Ingerslev, B. (2000). Effects of road distance and protective measures on deicing salt. Journal of Arboriculture, 26, 238–245.

    Google Scholar 

  • Rodriguez, H. G., Roberts, J. K. M., Jordan, W. R., & Drew, M. C. (1997). Growth, water relation, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiology, 113, 881–893.

    Article  CAS  Google Scholar 

  • Sarin, C., Hall, J. M., Cotter-Howells, J., Killham, K., & Cresser, M. S. (2000). Influence of complexation with chloride on the responses of a lux-marked bacteria bioassay to cadmium, copper, lead and mercury. Environmental Toxicology and Chemistry, 19, 259–264.

    CAS  Google Scholar 

  • Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of salt stress biomarkers in Romanian carpathian populations of Picea abies (L.) Karst. PLoS ONE. https://doi.org/10.1371/journal.pone.0135419.

  • Sehmer, L., Alaoui-Sossé, B., & Dizengremel, P. (1995). Effect of salt stress on growth and on detoxifying pathway of pedunculate oak seedlings. J. Plant Physiol, 147, 144–151.

    Article  CAS  Google Scholar 

  • Silveira, J. A. G., Araújo, S. A. M., Lima, J. P. M. S., & Viégas, R. A. (2009). Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. Environmental and Experimental Botany, 66, 1–8.

    Article  CAS  Google Scholar 

  • Sun, Y., Niu, G., Osuna, P., Zhao, L., Ganjegunte, G., Peterson, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Variability in salt tolerance of Sorghum bicolor L. Agricultural Sciences, 2(1), 09–21.

    Google Scholar 

  • Sun, F. F., Zhang, W. S., Hu, H. Z., Li, B., Wang, Y. N., Zhao, Y. K., Li, K., Liu, M., & Li, X. (2009). Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis thaliana. Plant Physiology, 146, 178–188.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (1998). Plant physiology. Sunderland, Massachusetts: Sinauer Associates, Inc..

    Google Scholar 

  • Thornton, F. C., Schadle, M., & Raynal, D. J. (1988). Sensitivity of red oak (Quercus rubra L.) and American beech (Fagus grandiflora Ehrh.) seedlings to sodium salts in solution culture. Tree Physiology, 4, 167–172.

    Article  CAS  Google Scholar 

  • Van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22, 280–283.

    Article  Google Scholar 

  • Viskari, E. L., & Kärenlampi, L. (2000). Roadside Scots pine as an indicator of de-icing salt use—a comparative study from two consecutive winters. Water, Air, and Soil Pollution, 122, 405–419.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, K., & Li, X. (2009). Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. Journal of Plant Physiology, 166, 1637–1645.

    Article  CAS  Google Scholar 

  • West, G., Inzé, D., & Beemster, G. T. S. (2004). Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology, 135, 1050–1058.

    Article  CAS  Google Scholar 

  • Yang, F., Xiao, X., Zhang, S., Korpelainen, H., & Li, C. (2009). Salt stress responses in Populus cathayana Rehder. Plant Science, 176, 669–677.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2002). Salt and drought stress signal transduction in plants. Plant Biol J, 53, 247–273.

    Article  CAS  Google Scholar 

  • Zörb, C., Mühling, K. H., Kutschera, U., & Geilfus, C. M. (2015). Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: Is the epidermis growth-restricting? PLoS One, 10, e0118406. https://doi.org/10.1371/journal.pone.0118406.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the French Agency for Environment and Energy Management (ADEME—France), the Regional Council (Conseil Régional) of Franche-Comté and the Rhone-Mediterranean and Corsica Water Agency (Agence de l’Eau Rhône-Méditerranée and Corse) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotfi Aleya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laffray, X., Alaoui-Sehmer, L., Bourioug, M. et al. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance. Environ Monit Assess 190, 266 (2018). https://doi.org/10.1007/s10661-018-6645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6645-z

Keywords

Navigation