Skip to main content
Log in

Improving secondary embryogenesis in Quercus robur: application of temporary immersion for mass propagation

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The effects of the culture system used for embryo proliferation were investigated with the aim of improving multiplication rates and somatic embryo quality in two embryogenic lines of Quercus robur derived from mature trees (B-17 and Sainza). Embryo proliferation medium was defined following comparison of five different semi-solid media, and the highest multiplication rates (based on the total number of embryos and number of cotyledonary-shaped embryos) were achieved with medium supplemented with 0.44 μM benzyladenine for both lines. Embryo proliferation on semi-solid medium was compared with that obtained by a temporary immersion system (TIS), in which four cycles with immersion frequencies of 1 min every 6, 8, 12 or 24 h were tested. TIS promoted a significant increase in proliferated embryo biomass, with the growth index (GI) two and four times higher than in semi-solid medium in B-17 and Sainza genotypes, respectively. An immersion cycle of 1 min every 8 or 12 h produced approximately 700 somatic embryos (B-17) and 1,500 somatic embryos (Sainza) per RITA® bioreactor, with significant differences in the latter genotype with respect to gelled medium. TIS had also a significant effect on somatic embryo synchronization as it enabled a higher production of cotyledonary embryos (90%), which represents increases of 14% (B-17) and 20% (Sainza) with respect to gelled medium. For germination of embryos proliferated in TIS two maturation systems were applied: (1) culture in semi-solid medium containing 6% sorbitol or (2) culture by TIS (without sorbitol) at a frequency of 1 min immersion every 48 h. Germination ability was higher after maturation on sorbitol medium and plantlet conversion occurred in 48% (B-17) and 13% (Sainza) embryos. TIS produced large numbers of well-developed cotyledonary embryos, hence reduced the cost and labor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akula A, Becker D, Bateson M (2000) High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, ‘TRI-2025’, by temporary immersion. Plant Cell Rep 19:1140–1145. doi:10.1007/s002990000239

    Article  CAS  Google Scholar 

  • Albarrán J, Bertrand B, Lartaud M, Etienne H (2005) Cycle characteristics in a temporary immersion bioreactor after regeneration, morphology, water and mineral status of coffee (Coffea arabica) somatic embryos. Plant Cell Tissue Organ Cult 81:27–36. doi:10.1007/s11240-004-2618-8

    Article  Google Scholar 

  • Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Effect of temporary immersion of explants. Plant Cell Tissue Organ Cult 32:55–60. doi:10.1007/BF00040116

    Article  Google Scholar 

  • Barry-Etienne D, Bertrand B, Schlönvoigt A, Etienne H (2002) The morphological variability within a population of coffee somatic embryos produced in a bioreactor affects the regeneration and the development of plants in the nursery. Plant Cell Tissue Organ Cult 68:153–162. doi:10.1023/A:1013874221569

    Article  Google Scholar 

  • Berthouly M, Dufour M, Alvard D, Carasco C, Alemano L, Teisson C (1995) Coffee micropropagation in a liquid medium using the temporary immersion technique. In: ASIC Publishers (ed) 16th international scientific colloquium on coffee. Kyoto, Japan, Vevey, pp 514–519

    Google Scholar 

  • Brito G, Lopes T, Loureiro J, Rodriguez E, Santos C (2010) Assessment of genetic stability of two micropropagated wild olive species using flow cytometry and microsatellite markers. Trees 24:723–732. doi:10.1007/s00468-010-0442-9

    Article  CAS  Google Scholar 

  • Cabasson C, Alvard A, Dambier D, Ollitraul P, Teisson C (1997) Improvement of Citrus somatic embryos development by temporary immersion. Plant Cell Tissue Organ Cult 50:33–37. doi:10.1023/A:1005896725780

    Article  Google Scholar 

  • Chalupa V (1990) Plant regeneration by somatic embryogenesis from cultured immature embryos of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Plant Cell Rep 9:398–401. doi:10.1007/BF00232408

    Article  CAS  Google Scholar 

  • Chalupa V (1993) Vegetative propagation of oak (Quercus robur and Q. petraea by cutting and tissue culture. Ann Sci For 50(Suppl 1):295–307

    Article  Google Scholar 

  • Chalupa V (2005) Protocol of somatic embryogenesis: pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea/Matt./Liebl.). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, The Netherlands, pp 369–378

    Chapter  Google Scholar 

  • Cuenca B, San-José MC, Martínez MT, Ballester A, Vieitez AM (1999) Somatic embryogenesis from stem and leaf explants of Quercus robur L. Plant Cell Rep 18:538–543. doi:10.1007/s002990050618

    Article  CAS  Google Scholar 

  • Ducos JP, Labbe G, Lambot C, Pétiard V (2007) Pilot scale process for the production of pre-germinated somatic embryos of selected robusta (Coffea canephora) clones. In Vitro Cell Dev Biol Plant 43:652–659. doi:10.1007/s11627-007-9075-0

    Article  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231. doi:10.1023/A:1015668610465

    Article  Google Scholar 

  • Etienne H, Lartaud M, Michaux-Ferrière N, Carron MP, Berthouly M, Teisson C (1997) Improvement of somatic embryogenesis in Hevea brasiliensis (Müll. Arg.) using the temporary immersion technique. In Vitro Cell Dev Biol Plant 33:81–87. doi:10.1007/s11627-997-0001-2

    Article  Google Scholar 

  • Etienne-Barry D, Bertrand B, Vasquez N, Etienne H (1999) Direct sowing of Coffea arabica somatic embryos mass-produced in a bioreactor and regeneration of plants. Plant Cell Rep 19:111–117

    Article  CAS  Google Scholar 

  • Féraud-Keller C, Espagnac H (1989) Conditions d’apparition d’une embryogénèse somatique sur des cals issus de la culture de tissus foliaires du chêne vert (Quercus ilex). Can J Bot 67:1066–1070. doi:10.1139/b89-139

    Google Scholar 

  • Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber. Plant Cell Tissue Organ Cult 41:99–106. doi:10.1007/BF00051578

    Article  Google Scholar 

  • Gómez Kosky R, Vilchez Perozo J, Albany Valero N, Agramonte Peñalver D (2005) Somatic embryo germination of Psidium guajava L. in the Rita® temporary immersion system and on semisolid medium. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Netherlands, pp 225–229

    Chapter  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107:161–170. doi:10.1007/BF00387721

    Article  Google Scholar 

  • Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2009) Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319:163–174. doi:10.1007/s11104-008-9858-z

    Article  CAS  Google Scholar 

  • Hernández I, Celestino C, Toribio B (2003a) Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764. doi:10.1007/s00299-003-0605-x

    PubMed  Google Scholar 

  • Hernández I, Celestino C, Toribio B (2003b) Vegetative propagation of Quercus suber L. by somatic embryogenesis. II. Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770. doi:10.1007/s00299-003-0604-y

    PubMed  Google Scholar 

  • Hua HW, Huang TD, Huang HS (2010) Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breeding 129:202–207. doi:10.1111/j.1439-0523.2009.01663.x

    Article  CAS  Google Scholar 

  • Ibaraki Y, Kurata K (2001) Automation of somatic embryo production. Plant Cell Tissue Organ Cult 65:179–199. doi:10.1023/A:1010636525315

    Article  CAS  Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. doi:10.1007/s10725-005-3478-x

    Article  Google Scholar 

  • Lashermes P, Bertrand B, Etienne H (2009) Breeding coffee (Coffea arabica) for sustainable production. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer Science + Business Media, LLC, Berlin, pp 525–543

    Google Scholar 

  • Lorenzo JC, Gonzalez BL, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54:197–200. doi:10.1023/A:1006168700556

    Article  CAS  Google Scholar 

  • Martínez T, Corredoira E, Valladares S, Jorquera L, Vieitez AM (2008) Germination and conversion of somatic embryos derived from mature Quercus robur trees: the effects of cold storage and thidiazuron. Plant Cell Tissue Organ Cult 95:341–351. doi:10.1007/s11240-008-9448-z

    Article  Google Scholar 

  • Martre P, Lacan D, Just D, Teisson C (2001) Physiological effects of temporary immersion on Hevea brasiliensis (Müll. Arg.) callus. Plant Cell Tissue Organ Cult 67:25–35. doi:10.1023/A:1011666531233

    Article  CAS  Google Scholar 

  • Mauri PV, Manzanera JA (2003) Induction, maturation and germination of holm oak (Quercus ilex L.) somatic embryos. Plant Cell Tissue Organ Cult 74:229–235. doi:10.1023/A:1024072913021

    Article  CAS  Google Scholar 

  • Mauri PV, Manzanera JA (2004) Effect of abscisic acid and stratification on somatic embryo maturation and germination of holm oak (Quercus ilex L.). In Vitro Cell Dev Biol Plant 40:495–498. doi:10.1079/IVP2004557

    Article  CAS  Google Scholar 

  • McAllister B, Finnie J, Watt MP, Blakeway F (2005) Use of the temporary immersion system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tissue Organ Cult 81:347–358. doi:10.1007/s11240-004-6658-x

    Article  Google Scholar 

  • Menéndez-Yuffá A, Barry-Etienne D, Bertrand B, Georget F, Etienne H (2010) A comparative analysis of the development and quality of nursery plants derived from somatic embryogenesis and from seedlings for large-scale propagation of coffee (Coffea arabica L.). Plant Cell Tiss Organ Cult 102:297–307. doi:10.1007/s11240-010-9734-4

    Article  Google Scholar 

  • Montalbán IA, De Diego N, Moncaleán P (2010) Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees 24:1061–1071. doi:10.1007/s00468-010-0477-y

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Niemenak N, Saare-Surminski K, Rohsius C, Omokolo Ndoumou D, Lieberei R (2008) Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep 27:667–676. doi:10.1007/s00299-007-0497-2

    Article  PubMed  CAS  Google Scholar 

  • Perrin Y, Doumas P, Lardet L, Carron M-P (1997) Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation. Plant Cell Tissue Organ Cult 47:239–245. doi:10.1007/BF02318978

    Article  Google Scholar 

  • Pinto G, Park YS, Silva S, Neves L, Araújo C, Santos C (2008) Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell Tissue Organ Cult 95:69–78. doi:10.1007/s11240-008-9417-6

    Article  CAS  Google Scholar 

  • Preil W (2005) General introduction: a personal reflection on the use of liquid media for in vitro culture. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Berlin, pp 1–18

    Chapter  Google Scholar 

  • Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010) Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees 24:1–12. doi:10.1007/s00468-009-0384-2

    Article  CAS  Google Scholar 

  • Rugini E, Mencuccini M, Biasi R, Altamura MM (2005) Olive (Olea europea L.). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, The Netherlands, pp 345–360

    Chapter  Google Scholar 

  • Sánchez C, Martínez MT, Valladares S, Ferro E, Viéitez AM (2003) Maturation and germination of oak somatic embryos originated from leaf and stem explants: RAPD markers for genetic analysis of regenerants. J Plant Physiol 160:699–707. doi:10.1078/0176-1617-00754

    Article  PubMed  Google Scholar 

  • Sánchez C, Martínez MT, Vidal N, San-José MC, Valladares S, Vieitez AM (2008) Preservation of Quercus robur germplasm by cryostorage of embryogenic cultures derived from mature trees and RAPD analysis of genetic stability. CryoLetters 29:493–504

    PubMed  Google Scholar 

  • San-José MC, Corredoira E, Martínez MT, Vidal N, Valladares S, Mallón R, Vieitez AM (2010) Shoot apex explants for induction of somatic embryogenesis in mature Quercus robur L. trees. Plant Cell Rep 29:661–671. doi:10.1007/s00299-010-0852-6

    Article  PubMed  Google Scholar 

  • Sankar-Thomas YD, Saare-Surminski K, Lieberei R (2008) Plant regeneration via somatic embryogenesis of Camptotheca acuminata in temporary immersion system (TIS). Plant Cell Tissue Organ Cult 95:163–173. doi:10.1007/s11240-008-9428-3

    Article  Google Scholar 

  • Shi X, Dai X, Liu G, Zhang J, Ning G, Bao M (2010) Cyclic secondary somatic embryogenesis and efficient plant regeneration in camphor tree (Cinnamomum camphora L.). In Vitro Cell Dev Biol Plant 46:117–125. doi:10.1007/s11627-009-9272-0

    Article  CAS  Google Scholar 

  • Sunderlikova V, Wilhelm E (2002) High accumulation of legumin and Lea-like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L.). Protoplasma 220:97–103. doi:10.1007/s00709-002-0025-8

    Article  PubMed  CAS  Google Scholar 

  • Thomas FM, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. For Pathol 32:277–307. doi:10.1046/j.1439-0329.2002.00291.x

    Article  Google Scholar 

  • Toribio M, Fernández C, Celestino C, Martínez MT, San-José MC, Vieitez AM (2004) Somatic embryogenesis in mature Quercus robur trees. Plant Cell Tissue Organ Cult 76:283–287. doi:10.1023/B:TICU.0000009245.92828.26

    Article  Google Scholar 

  • Toribio M, Celestino C, Molinas M (2005) Cork oak, Quercus suber L. In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 445–457

    Chapter  Google Scholar 

  • Valladares S, Sánchez C, Martínez MT, Ballester A, Vieitez AM (2006) Plant regeneration through somatic embryogenesis from tissues of mature oak trees: true-to-type conformity of plantlets by RAPD analysis. Plant Cell Rep 25:879–886. doi:10.1007/s00299-005-0108-z

    Article  PubMed  CAS  Google Scholar 

  • Vengadesan G, Pijut PM (2009) Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tissue Organ Cult 97:141–149. doi:10.1007/s11240-009-9508-z

    Article  Google Scholar 

  • Vieitez AM, San-José MC, Sánchez MC, Ballester A (2003) Micropropagation of Fagus spp. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, The Netherlands, pp 181–215

    Chapter  Google Scholar 

  • Vieitez AM, Corredoira E, Ballester A, Muñoz F, Durán J, Ibarra M (2009) In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell Tissue Organ Cult 98:135–145. doi:10.1007/s11240-009-9546-6

    Article  CAS  Google Scholar 

  • Vieitez AM, Corredoira E, Martínez T, San-José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2011) Application of biotechnological tools to Quercus improvement. Eur J Forest Res (in Press). doi:10.1007/s10342-011-0526-0

  • Wilhelm E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357. doi:10.1007/s11627-000-0062-y

    Article  CAS  Google Scholar 

  • Zegzouti R, Arnould MF, Favre JM (2001) Histological investigation of the multiplication step in secondary embryogenesis of Quercus robur L. Ann Forest Sci 58:681–690. doi:10.1051/forest:2001155

    Article  Google Scholar 

Download references

Acknowledgments

R. Mallón was supported by a postdoctoral JAE-Doc contract from the CSIC. This research was partially funded by the Xunta de Galicia (Spain) through project 09MRU002400PR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Mallón.

Additional information

Communicated by K. Klimaszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallón, R., Covelo, P. & Vieitez, A.M. Improving secondary embryogenesis in Quercus robur: application of temporary immersion for mass propagation. Trees 26, 731–741 (2012). https://doi.org/10.1007/s00468-011-0639-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0639-6

Keywords

Navigation