For computation of flow problems with moving boundaries and interfaces (MBI), including fluid–structure interaction (FSI), we introduce a low-distortion mesh moving method based on fiber-reinforced hyperelasticity and optimized zero-stress state (ZSS). With the large-deformation mechanics equations, we can expect to have a unique mesh associated with each step of the boundary motion. The method has been developed targeting isogeometric discretization but is also applicable to finite element discretization. To show how the method introduced performs, we present 2D and 3D test computations with isogeometric discretization.
Moving-mesh methods
Key features
In moving-mesh (interface-tracking) methods, as the interface moves and the fluid mechanics domain changes its shape, the mesh moves to adjust to the shape change and to follow (i.e. “track”) the interface. Moving the fluid mechanics mesh to follow a fluid–solid interface enables us to control the mesh resolution near the interface, have high-resolution representation of the boundary layers, and obtain accurate solutions in such critical flow regions. These desirable features do not come easily or do not come at all with the nonmoving-mesh (interface-capturing) methods. In these methods, the interface geometry is somehow represented over a nonmoving fluid mechanics mesh, with more accuracy in some methods than in some others, but the key point is that the fluid mechanics mesh does not move to follow the interface. Because the mesh is not following the interface, independent of how accurately the interface geometry is represented, the boundary layer resolution will be limited by the fluid mechanics mesh resolution where the interface is.
Mixed moving-mesh/nonmoving-mesh methods
As mentioned in [1], one of course recognizes that certain classes of interfaces (such as free-surface and two-fluid flows with splashing) might be too complex to handle with an interface-tracking technique and, therefore, for all practical purposes, require an interface-capturing technique. The Mixed Interface-Tracking/Interface-Capturing Technique (MITICT) [2] was introduced in 2000 for computation of MBI problems that involve both fluid–solid interfaces that can be accurately tracked with a moving-mesh method and fluid–fluid interfaces that are too complex or unsteady to be tracked. Such fluid–fluid interfaces are captured over the mesh tracking the fluid–solid interfaces. Thinking similarly about MBI problems with an actual contact or other topology change, the Fluid–Solid Interface-Tracking/Interface-Capturing Technique (FSITICT) was introduced in [3] as the FSI version of the MITICT. In the FSITICT, we track the interface we can with a moving mesh, and capture over that moving mesh the interfaces we cannot track, specifically the interfaces where we need to have an actual contact between the solid surfaces.
Space–time (ST) methods
The Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method [4,5,6], introduced for computation of flows with MBI, including FSI, is a moving-mesh method, possessing the associated desirable features. The stabilization components of this original DSD/SST are the Streamline-Upwind/Petrov-Galerkin (SUPG) [7] and Pressure-Stabilizing/Petrov-Galerkin (PSPG) [4] stabilizations, and therefore it is now called “ST-SUPS.” The ST Variational Multiscale (ST-VMS) method [8,9,10], which subsumes its precursor ST-SUPS is the VMS version of the DSD/SST. The VMS components of the ST-VMS are from the residual-based VMS (RBVMS) method [11,12,13,14]. The ST-VMS has two more stabilization terms beyond those in the ST-SUPS, and the additional terms give the method better turbulence modeling features. The ST-SUPS and ST-VMS, because of the higher-order accuracy of the ST framework (see [8, 9]), are desirable also in computations without MBI.
ALE-SUPS and ALE-VMS methods and classes of problems computed
In the moving-mesh category, the DSD/SST is an alternative to the Arbitrary Lagrangian–Eulerian (ALE) method, which is older (see, for example, [15]) and more commonly used. The ALE-VMS method [1, 16,17,18,19,20,21] is the VMS version of the ALE. It succeeded the ST-SUPS and ALE-SUPS [22] and preceded the ST-VMS. To increase their scope and accuracy, the ALE-VMS and RBVMS are often supplemented with special methods, such as those for weakly-enforced Dirichlet boundary conditions [23,24,25] and “sliding interfaces” [26, 27]. The ALE-SUPS, RBVMS and ALE-VMS have been applied to many classes of FSI, MBI and fluid mechanics problems. The classes of problems include ram-air parachute FSI [22], wind-turbine aerodynamics and FSI [28,29,30,31,32,33,34,35,36,37,38], more specifically, vertical-axis wind turbines [37,38,39,40], floating wind turbines [41], wind turbines in atmospheric boundary layers [36,37,38, 42], and fatigue damage in wind-turbine blades [43], patient-specific cardiovascular fluid mechanics and FSI [16, 44,45,46,47,48,49], biomedical-device FSI [50,51,52,53,54,55], ship hydrodynamics with free-surface flow and fluid–object interaction [56, 57], hydrodynamics and FSI of a hydraulic arresting gear [58, 59], hydrodynamics of tidal-stream turbines with free-surface flow [60], passive-morphing FSI in turbomachinery [61], bioinspired FSI for marine propulsion [62, 63], bridge aerodynamics and fluid–object interaction [64,65,66], and mixed ALE-VMS/Immersogeometric computations [53,54,55, 67, 68] in the framework of the FSITICT. Recent advances in stabilized and multiscale methods may be found for stratified incompressible flows in [69], for divergence-conforming discretizations of incompressible flows in [70], and for compressible flows with emphasis on gas-turbine modeling in [71].
Classes of problems computed with the ST-SUPS and ST-VMS
The ST-SUPS and ST-VMS have also been applied to many classes of FSI, MBI and fluid mechanics problems (see [72] for a comprehensive summary). The classes of problems include spacecraft parachute analysis for the landing-stage parachutes [1, 73,74,75,76], cover-separation parachutes [77] and the drogue parachutes [78,79,80], wind-turbine aerodynamics for horizontal-axis wind-turbine rotors [1, 28, 81, 82], full horizontal-axis wind-turbines [34, 83,84,85] and vertical-axis wind-turbines [37, 38, 86], flapping-wing aerodynamics for an actual locust [1, 87,88,89], bioinspired MAVs [84, 85, 90, 91] and wing-clapping [92, 93], blood flow analysis of cerebral aneurysms [84, 94], stent-blocked aneurysms [94,95,96], aortas [97,98,99,100,101], heart valves [85, 92, 99, 101,102,103,104,105,106], ventricle-valve-aorta sequences [107], and coronary arteries in motion [108], spacecraft aerodynamics [77, 109], thermo-fluid analysis of ground vehicles and their tires [10, 103], thermo-fluid analysis of disk brakes [110], flow-driven string dynamics in turbomachinery [111,112,113], flow analysis of turbocharger turbines [114,115,116,117,118], flow around tires with road contact and deformation [103, 119,120,121,122], fluid films [122, 123], ram-air parachutes [124], and compressible-flow spacecraft parachute aerodynamics [125, 126].
Special ST methods
A number of special ST methods have been developed in conjunction with the ST-SUPS and ST-VMS to increase their accuracy and scope. They are the ST Slip Interface (ST-SI) method [86, 110], ST Topology Change (ST-TC) method [92, 102], ST Isogeometric Analysis (ST-IGA) [8, 87, 114], and their integration as the ST-SI-TC [119], ST-SI-IGA [114], and ST-SI-TC-IGA [104, 105].
ST-SI
The ST-SI was introduced in [86], in the context of incompressible-flow equations, to retain the desirable moving-mesh features of the ST-VMS and ST-SUPS in computations involving spinning solid surfaces, such as a turbine rotor. The mesh covering the spinning surface spins with it, retaining the high-resolution representation of the boundary layers, while the mesh on the other side of the SI remains unaffected. This is accomplished by adding to the ST-VMS formulation interface terms similar to those in the version of the ALE-VMS for computations with sliding interfaces [26, 27]. The interface terms account for the compatibility conditions for the velocity and stress at the SI, accurately connecting the two sides of the solution. An ST-SI version where the SI is between fluid and solid domains was also presented in [86]. The SI in that case is a “fluid–solid SI” rather than a standard “fluid–fluid SI” and enables weak enforcement of the Dirichlet boundary conditions for the fluid. The ST-SI introduced in [110] for the coupled incompressible-flow and thermal-transport equations retains the high-resolution representation of the thermo-fluid boundary layers near spinning solid surfaces. These ST-SI methods have been applied to aerodynamic analysis of vertical-axis wind turbines [37, 38, 86], thermo-fluid analysis of disk brakes [110], flow-driven string dynamics in turbomachinery [111,112,113], flow analysis of turbocharger turbines [114,115,116,117,118], flow around tires with road contact and deformation [103, 119,120,121,122], fluid films [122, 123], aerodynamic analysis of ram-air parachutes [124], and flow analysis of heart valves [99, 101, 104,105,106] and ventricle-valve-aorta sequences [107].
In the ST-SI version presented in [86] the SI is between a thin porous structure and the fluid on its two sides. This enables dealing with the porosity in a fashion consistent with how the standard fluid–fluid SIs are dealt with and how the Dirichlet conditions are enforced weakly with fluid–solid SIs. This version also enables handling thin structures that have T-junctions. This method has been applied to incompressible-flow aerodynamic analysis of ram-air parachutes with fabric porosity [124]. The compressible-flow ST-SI methods were introduced in [125], including the version where the SI is between a thin porous structure and the fluid on its two sides. Compressible-flow porosity models were also introduced in [125]. These, together with the compressible-flow ST SUPG method [127], extended the ST computational analysis range to compressible-flow aerodynamics of parachutes with fabric and geometric porosities. That enabled ST computational flow analysis of the Orion spacecraft drogue parachute in the compressible-flow regime [125, 126].
ST-TC
The ST-TC [92, 102] was introduced for moving-mesh computation of flow problems with TC, such as contact between solid surfaces. Even before the ST-TC, the ST-SUPS and ST-VMS, when used with robust mesh update methods, have proven effective in flow computations where the solid surfaces are in near contact or create other near TC, if the nearness is sufficiently near for the purpose of solving the problem. Many classes of problems can be solved that way with sufficient accuracy. For examples of such computations, see the references mentioned in [92]. The ST-TC made moving-mesh computations possible even when there is an actual contact between solid surfaces or other TC. By collapsing elements as needed, without changing the connectivity of the “parent” mesh, the ST-TC can handle an actual TC while maintaining high-resolution boundary layer representation near solid surfaces. This enabled successful moving-mesh computation of heart valve flows [85, 92, 99, 101,102,103,104,105,106], ventricle-valve-aorta flows [107], wing clapping [92, 93], flow around a rotating tire with road contact and prescribed deformation [103, 119,120,121,122], and fluid films [122, 123].
ST-SI-TC
The ST-SI-TC is the integration of the ST-SI and ST-TC. A fluid–fluid SI requires elements on both sides of the SI. When part of an SI needs to coincide with a solid surface, which happens for example when the solid surfaces on two sides of an SI come into contact or when an SI reaches a solid surface, the elements between the coinciding SI part and the solid surface need to collapse with the ST-TC mechanism. The collapse switches the SI from fluid–fluid SI to fluid–solid SI. With that, an SI can be a mixture of fluid–fluid and fluid–solid SIs. With the ST-SI-TC, the elements collapse and are reborn independent of the nodes representing a solid surface. The ST-SI-TC enables high-resolution flow representation even when parts of the SI are coinciding with a solid surface. It also enables dealing with contact location change and contact sliding. This was applied to heart valve flow analysis [99, 101, 104,105,106], ventricle-valve-aorta flows [107], tire aerodynamics with road contact and deformation [103, 119,120,121,122], and fluid films [122, 123].
ST-IGA
The success with IGA basis functions in space [16, 26, 44, 128] motivated the integration of the ST methods with isogeometric discretization, which we broadly call “ST-IGA.” The ST-IGA was introduced in [8]. Computations with the ST-VMS and ST-IGA were first reported in [8] in a 2D context, with IGA basis functions in space for flow past an airfoil, and in both space and time for the advection equation. Using higher-order basis functions in time enables deriving full benefit from using higher-order basis functions in space. This was demonstrated with the stability and accuracy analysis given in [8] for the advection equation.
The ST-IGA with IGA basis functions in time enables a more accurate representation of the motion of the solid surfaces and a mesh motion consistent with that. This was pointed out in [8, 9] and demonstrated in [87, 88, 90]. It also enables more efficient temporal representation of the motion and deformation of the volume meshes, and more efficient remeshing. These motivated the development of the ST/NURBS Mesh Update Method (STNMUM) [87, 88, 90], with the name coined in [83]. The STNMUM has a wide scope that includes spinning solid surfaces. With the spinning motion represented by quadratic NURBS in time, and with sufficient number of temporal patches for a full rotation, the circular paths are represented exactly. A “secondary mapping” [1, 8, 9, 87] enables also specifying a constant angular velocity for invariant speeds along the circular paths. The ST framework and NURBS in time also enable, with the “ST-C” method, extracting a continuous representation from the computed data and, in large-scale computations, efficient data compression [10, 103, 110,111,112,113, 129]. The STNMUM and the ST-IGA with IGA basis functions in time have been used in many 3D computations. The classes of problems solved are flapping-wing aerodynamics for an actual locust [1, 87,88,89], bioinspired MAVs [84, 85, 90, 91] and wing-clapping [92, 93], separation aerodynamics of spacecraft [77], aerodynamics of horizontal-axis [34, 83,84,85] and vertical-axis [37, 38, 86] wind-turbines, thermo-fluid analysis of ground vehicles and their tires [10, 103], thermo-fluid analysis of disk brakes [110], flow-driven string dynamics in turbomachinery [111,112,113], flow analysis of turbocharger turbines [114,115,116,117,118], and flow analysis of coronary arteries in motion [108].
The ST-IGA with IGA basis functions in space enables more accurate representation of the geometry and increased accuracy in the flow solution. It accomplishes that with fewer control points, and consequently with larger effective element sizes. That in turn enables using larger time-step sizes while keeping the Courant number at a desirable level for good accuracy. It has been used in ST computational flow analysis of turbocharger turbines [114,115,116,117,118], flow-driven string dynamics in turbomachinery [112, 113], ram-air parachutes [124], spacecraft parachutes [126], aortas [99,100,101], heart valves [99, 101, 104,105,106], ventricle-valve-aorta sequences [107], coronary arteries in motion [108], tires with road contact and deformation [120,121,122], and fluid films [122, 123]. Using IGA basis functions in space is now a key part of some of the newest arterial ZSS estimation methods [101, 130,131,132,133,134,135] and related shell analysis [136].
ST-SI-IGA and ST-SI-TC-IGA
The ST-SI-IGA is the integration of the ST-SI and ST-IGA, and the ST-SI-TC-IGA is the integration of the ST-SI, ST-TC and ST-IGA.
The turbocharger turbine flow [114,115,116,117,118] and flow-driven string dynamics in turbomachinery [112, 113] were computed with the ST-SI-IGA. The IGA basis functions were used in the spatial discretization of the fluid mechanics equations and also in the temporal representation of the rotor and spinning-mesh motion. That enabled accurate representation of the turbine geometry and rotor motion and increased accuracy in the flow solution. The IGA basis functions were used also in the spatial discretization of the string structural dynamics equations. That enabled increased accuracy in the structural dynamics solution, as well as smoothness in the string shape and fluid dynamics forces computed on the string.
The ram-air parachute analysis [124] and spacecraft parachute compressible-flow analysis [126] were conducted with the ST-SI-IGA, based on the ST-SI version that weakly enforces the Dirichlet conditions and the ST-SI version that accounts for the porosity of a thin structure. The ST-IGA with IGA basis functions in space enabled, with relatively few number of unknowns, accurate representation of the parafoil and parachute geometries and increased accuracy in the flow solution. The volume mesh needed to be generated both inside and outside the parafoil. Mesh generation inside was challenging near the trailing edge because of the narrowing space. The spacecraft parachute has a very complex geometry, including gores and gaps. Using IGA basis functions addressed those challenges and still kept the element density near the trailing edge of the parafoil and around the spacecraft parachute at a reasonable level.
The heart valve flow analyses [99, 101, 104,105,106] and ventricle-valve-aorta flow analysis [107] were conducted with the ST-SI-TC-IGA. The method, beyond enabling a more accurate representation of the geometry and increased accuracy in the flow solution, kept the element density in the narrow spaces near the contact areas at a reasonable level. When solid surfaces come into contact, the elements between the surface and the SI collapse. Before the elements collapse, the boundaries could be curved and rather complex, and the narrow spaces might have high-aspect-ratio elements. With NURBS elements, it was possible to deal with such adverse conditions rather effectively.
In computational analysis of flow around tires with road contact and deformation [120,121,122], the ST-SI-TC-IGA enables a more accurate representation of the geometry and motion of the tire surfaces, a mesh motion consistent with that, and increased accuracy in the flow solution. It also keeps the element density in the tire grooves and in the narrow spaces near the contact areas at a reasonable level. In addition, we benefit from the mesh generation flexibility provided by using SIs.
In computational analysis of fluid films [122, 123], the ST-SI-TC-IGA enables solution with a computational cost comparable to that of the Reynolds-equation model for the comparable solution quality [123]. With that, narrow gaps associated with the road roughness [122] can be accounted for in the flow analysis around tires.
An SI provides mesh generation flexibility in a general context by accurately connecting the two sides of the solution computed over nonmatching meshes. This type of mesh generation flexibility is especially valuable in complex-geometry flow computations with isogeometric discretization, removing the matching requirement between the NURBS patches without loss of accuracy. This feature was used in the flow analysis of heart valves [99, 101, 104, 105], ventricle-valve-aorta sequences [107], turbocharger turbines [114,115,116,117,118], and spacecraft parachute compressible-flow analysis [126].
Moving-mesh methods are worth the effort to make them work
It is quite evident from Sects. 1.1.4, 1.1.5 and 1.2 that moving-mesh methods have been practical in more classes of complex FSI and MBI problems than commonly thought of, and, with the increased scope provided by the special methods, the ST methods can now do even more. In many classes of computations, the moving-mesh methods are worth the effort to make them work.
Mesh moving methods
Good moving-mesh methods require good mesh moving methods, and that has to be part of the effort to make the moving-mesh methods work.
Mesh moving and remeshing
In a more general context, moving-mesh methods require mesh update methods. Mesh update has two components: moving the mesh for as long as it is possible, which is the core component, and full or partial remeshing (i.e. generating a new set of elements, and sometimes also a new set of nodes) when the element distortion becomes too high. The key objectives of a mesh moving method should be to maintain the element quality near solid surfaces and to minimize remeshing frequency. Provided that at the boundaries and interfaces the normal velocity of the mesh matches the normal velocity of the fluid, we can move the mesh any way we find most suitable for meeting those objectives.
Mesh moving based on linear elasticity and mesh-Jacobian-based stiffening
In the mesh moving method introduced in 1992 [137,138,139], the motion of the internal nodes is determined by solving the equations of linear elasticity. As the boundary condition, the normal velocity of the mesh at the boundaries and interfaces is specified to match the velocity of the fluid. The mesh deformation is dealt with selectively based on the sizes of the elements. Selective treatment based on element sizes is attained by altering the way we account for the Jacobian of the transformation from the element domain to the physical domain. The objective is to stiffen the smaller elements, which are typically placed near solid surfaces, more than the larger ones. When this method was first introduced in [137,138,139], it consisted of simply dropping Jacobian from the finite element formulation of the mesh moving (elasticity) equations. This results in the smaller elements being stiffened more than the larger ones. The method was given the name “Jacobian-based stiffening” (JBS) in [140]. It was also augmented in [140] to a more extensive kind by introducing a stiffening power \(\chi \) that determines the degree by which the smaller elements are rendered stiffer than the larger ones. This approach, when \(\chi \) = 1, would be identical to the method first introduced in [137], and most of the time \(\chi \) = 1. To also clarify that the “Jacobian” in the name of the method is the mesh Jacobian, in [107] the method was renamed “Mesh-Jacobian-based stiffening” (MJBS).
Solid-Extension Mesh Moving Technique (SEMMT)
In dealing with fluid–solid interfaces, sometimes we need to place thin layers of elements near the solid surfaces to fully control the mesh resolution there and have more accurate representation of the boundary layers. In the mesh moving method introduced in [137,138,139], such layers of elements move “glued” to the solid objects, undergoing rigid-body motion. No equations are solved for the motion of the nodes in these layers, because these nodal displacements are not governed by the equations of elasticity. This results in some cost reduction. But, more importantly, we have full control of the mesh resolution in these layers. Examples of automatic mesh moving combined with thin layers of elements undergoing rigid-body motion with solid objects were reported as early as 1993 (see [138, 139]). Earlier examples of element layers undergoing rigid-body motion, in combination with deforming structured meshes, were reported in 1990 [4]. In computation of flows with fluid–solid interfaces where the solid is deforming, the motion of the fluid mesh near the interface cannot be represented by a rigid-body motion. Depending on the deformation mode of the solid, the mesh moving method described in Sect. 1.4.2 may need to be used. In such cases, the thin layers of elements near the solid surface become a challenge for the mesh moving method.
The SEMMT was proposed in 2001 [141]. In the SEMMT [1, 141,142,143,144], the thin layers of elements are treated almost like an extension of the solid elements. In solving the equations of elasticity governing the motion of the fluid nodes, higher stiffness is assigned to the thin layers of elements compared to the other fluid elements. Two ways of accomplishing this were proposed in [141]: solving the elasticity equations for the nodes connected by the thin layers of elements separate from the elasticity equations for the other nodes, or together. If they are solved separately, for the thin layers of elements, as boundary conditions at the interface with the other elements, traction-free conditions would be used. The separate solution option is referred to as “SEMMT – Multiple Domain (SEMMT-MD),” and the unified solution option as “SEMMT – Single Domain (SEMMT-SD).” In [1, 143,144,145], test computations were presented to demonstrate how the SEMMT works as part of the mesh update method used with the ST-SUPS method. Both SEMMT options described above were employed. The tests included mesh deformation tests [1, 143,144,145] and a 2D FSI model problem [143, 144].
Mesh moving based on large-deformation mechanics
In computing the mesh motion from time level \(t_n\) to \(t_{n+1}\) with the linear-elasticity equations, typically the configuration at \(t_n\) is where we compute the displacement from. That works for most problems, but, as mentioned in [107], there are two closely related drawbacks: i) the method is path-dependent, ii) once elements accumulate in some region, it is hard to undo that. The path-dependence leads to non-cyclic results in FSI computations that we expect to have cyclic or near-cyclic results. While the “back-cycle-based mesh moving” (BCBMM) method introduced in [107] can remedy that, moving the mesh based on large-deformation mechanics equations provides a more general solution. That was the mesh moving method used in a number of recent FSI and other MBI computations with the ST-SUPS and ST-VMS (see, for example, [10, 75, 85, 92, 97]). Additional good features of this method are, as pointed out in [75], having many constitutive models to choose from and being able to define the ZSS locally in arbitrary orientations. The constitutive model was St. Venant–Kirchhoff in [75], and neo-Hookean in [10, 85, 92, 97]. The MJBS can still be part of the mesh moving method, and it was in the computations reported in [10, 97].
Element-based mesh relaxation (EBMR)
The EBMR was introduced in 2013 [75]. It restores, without resorting to remeshing, the mesh integrity lost during the mesh motion. The loss of mesh integrity, though not frequent because of the advanced mesh moving methods used with the ST-SUPS and ST-VMS, can happen in FSI computations with a high level of complexity. A recent example of such complexity is FSI computation of clusters of spacecraft parachutes with modified geometric porosity [74,75,76, 78, 79, 84]. When faced with a loss of mesh integrity, it was proposed in [75] to use the EBMR, where the mesh is “relaxed” without altering the mesh at the fluid–structure interface and thus the mesh integrity is somewhat restored. As commented in [75], this is of course a less costly and less disruptive alternative to remeshing.
In the EBMR, the new mesh has the same number of nodes and elements as before, but some of the nodes are moved slightly to improve the quality of some of the elements. The motion is determined by using the large-deformation mechanics equations and an element-based ZSS (EBZSS). This is essentially a shape generated for each element. By design, the undeformed shape, made of “target elements,” is the shape we want to obtain from solving the solid mechanics equations. There are several options for constructing the target element shapes, and those options can be found in [75]. The EBMR was successfully used in FSI computation of clusters of spacecraft parachutes with modified geometric porosity (see [75]).
Locally-defined ZSS
Locally-defined ZSS originated as arterial ZSS estimation (see [101, 130,131,132,133,134,135]). It was formulated first as the EBZSS in the finite element discretization context [130, 131], then as the EBZSS in the isogeometric discretization context [132, 133], and then as the integration point based ZSS (IPBZSS) in the isogeometric discretization context [134, 135].
EBZSS
In the EBZSS, we define the ZSS with a set of positions for each element. Positions of nodes (control points) from different elements mapping to the same node in the mesh do not have to be the same. In the reference configuration, all elements are connected by nodes, and we measure the displacement from that connected configuration. This way of formulating the structural mechanics problem was named in [130] “element-based total Lagrangian (EBTL)” method. The EBTL was used in the EBMR [75]. We explain more in Sect. 2.1.
IPBZSS
In the IPBZSS, we extended the way we define EBZSS to integration-point counterpart of that. The ZSS is represented in terms of the metric tensor. Converting the EBZSS representation to IPBZSS representation is straightforward and the conversion will be exact. Converting the IPBZSS representation to EBZSS representation will, in general, not be exact because the IPBZSS has more parameters than the EBZSS. Here we name this way of formulating the structural mechanics problem “integration-point-based total Lagrangian (IPBTL)” method. We explain more in Sect. 2.2.
Stabilization parameters and their mesh sensitivity
The ST-SUPS, ALE-SUPS, RBVMS, ALE-VMS and ST-VMS all have some embedded stabilization parameters that play a significant role (see [1]). These parameters involve a measure of the local length scale (quite often called “element length”) and other parameters such as the element Reynolds and Courant numbers. The interface terms in the ST-SI also involve the local length scale, in the direction normal to the interface. There are many ways of defining the stabilization parameters. Some of the newer options for the stabilization parameters used with the SUPS and VMS can be found in [10, 82, 83, 86, 87, 121, 146,147,148,149]. Some of the earlier stabilization parameters used with the SUPS and VMS were also used in computations with other SUPG-like methods, such as the computations reported in [61, 150,151,152,153,154,155,156,157,158,159,160,161].
Because the stabilization parameters depend on the local length scale, we expect them to have increased mesh sensitivity near the solid surfaces as the mesh moves, because the elements there are typically very thin in the direction normal to the surface. This is another reason to have a good mesh moving method, with the thin layers of elements near solid surfaces shielded from distortion. The SEMMT (see Sect. 1.4.3) accomplishes that to a large extent.
Mesh moving based on fiber-reinforced hyperelasticity and optimized ZSS
In the mesh moving method we introduce in this article, with the fibers placed in multiple directions, we stiffen the element in those directions for the purpose of reducing the distortion during the mesh deformation. We optimize the ZSS by seeking orthogonality of the parametric directions, by mesh relaxation, and by making the ZSS time-dependent as needed.
Test computations
We first conduct 2D test computations with a flow domain containing a beam undergoing three different modes of motion: translation, rotation and bending. Then we do 2D test computations with a rectangular domain undergoing compression and expansion. The 3D tests are with a box-shaped flow domain containing a square block undergoing torsion.
Outline of the remaining sections
In Sect. 2, we provide the large-deformation mechanics framework that we use in the mesh moving method we are introducing. We describe the fiber-reinforced hyperelasticity model in Sect. 3, and introduce the mesh moving method in Sect. 4. The test computations are presented in Sect. 5, and the concluding remarks in Sect. 6. The MJBS, which we also use in the test computations for comparison purposes, is described in Appendix A.