Skip to main content

Advertisement

Log in

Fluid–structure interaction modeling of wind turbines: simulating the full machine

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we present our aerodynamics and fluid–structure interaction (FSI) computational techniques that enable dynamic, fully coupled, 3D FSI simulation of wind turbines at full scale, and in the presence of the nacelle and tower (i.e., simulation of the “full machine”). For the interaction of wind and flexible blades we employ a nonmatching interface discretization approach, where the aerodynamics is computed using a low-order finite-element-based ALE-VMS technique, while the rotor blades are modeled as thin composite shells discretized using NURBS-based isogeometric analysis (IGA). We find that coupling FEM and IGA in this manner gives a good combination of efficiency, accuracy, and flexibility of the computational procedures for wind turbine FSI. The interaction between the rotor and tower is handled using a non-overlapping sliding-interface approach, where both moving- and stationary-domain formulations of aerodynamics are employed. At the fluid–structure and sliding interfaces, the kinematic and traction continuity is enforced weakly, which is a key ingredient of the proposed numerical methodology. We present several simulations of a three-blade 5~MW wind turbine, with and without the tower. We find that, in the case of no tower, the presence of the sliding interface has no effect on the prediction of aerodynamic loads on the rotor. From this we conclude that weak enforcement of the kinematics gives just as accurate results as the strong enforcement, and thus enables the simulation of rotor–tower interaction (as well as other applications involving mechanical components in relative motion). We also find that the blade passing the tower produces a 10–12 % drop (per blade) in the aerodynamic torque. We feel this finding may be important when it comes to the fatigue-life analysis and prediction for wind turbine blades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonkman JM, Buhl ML Jr (2005) FAST user’s guide. Technical report NREL/EL-500-38230. National Renewable Energy Laboratory, Golden

    Google Scholar 

  2. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060. National Renewable Energy Laboratory, Golden,CO

  3. Sørensen NN, Michelsen JA, Schreck S (2002) Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 ft wind tunnel. Wind Energy 5: 151–169

    Article  Google Scholar 

  4. Duque EPN, Burklund MD, Johnson W (2003) Navier–Stokes and comprehensive analysis performance predictions of the NREL Phase VI experiment. J Solar Energy Eng 125: 457–467

    Article  Google Scholar 

  5. Le Pape A, Lecanu J (2004) 3D Navier–Stokes computations of a stall-regulated wind turbine. Wind Energy 7: 309–324

    Article  Google Scholar 

  6. Chao DD van~Dam CP (2007) Computational aerodynamic analysis of a blunt trailing-edge airfoil modification to the NREL Phase VI rotor. Wind Energy 10: 529–550

    Article  Google Scholar 

  7. Gómez-Iradi S, Steijl R, Barakos GN (2009) Development and validation of a CFD technique for the aerodynamic analysis of HAWT. J Solar Energy Eng 131:031009-1-13

    Google Scholar 

  8. Zahle F, Sørensen NN, Johansen J (2009) Wind turbine rotor-tower interaction using an incompressible overset grid method. Wind Energy 12: 594–619

    Article  Google Scholar 

  9. Bazilevs Y, Hsu MC, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics. Int J Num Methods Fluids 65: 207–235

    Article  MATH  Google Scholar 

  10. Takizawa K, Henicke B, Tezduyar TE, Hsu MC, Bazilevs Y (2011) Stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 333–344

    Article  MATH  Google Scholar 

  11. Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space–time computation of wind-turbine rotor aerodynamics. Comput Mech 48: 647–657

    Article  MATH  Google Scholar 

  12. Bechmann A, Sørensen NN, Zahle F (2011) CFD simulations of the MEXICO rotor. Wind Energy 14: 677–689

    Article  Google Scholar 

  13. Li Y, Carrica PM, Paik KJ, Xing T (2012) Dynamic overset CFD simulations of wind turbine aerodynamics. Renew Energy 37: 285–298

    Article  Google Scholar 

  14. Sørensen NN, Schreck S (2012) Computation of the national renewable energy laboratory phase-VI rotor in pitch motion during standstill. Wind Energy. doi:10.1002/we.480

  15. Scheurich F, Brown RE (2012) Modelling the aerodynamics of vertical-axis wind turbines in unsteady wind conditions. Wind Energy. doi:10.1002/we.532

  16. Chow R, van~Dam CP (2012) Verification of computational simulations of the NREL 5 MW rotor with a focus on inboard flow separation. Wind Energy. doi:10.1002/we.529.

  17. Kong C, Bang J, Sugiyama Y (2005) Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30: 2101–2114

    Article  Google Scholar 

  18. Lund E, Stegmann J (2005) On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8: 109–124

    Article  Google Scholar 

  19. Hansen MOL, Sørensen JN, Voutsinas S, Sørensen N, Madsen Aa H (2006) State of the art in wind turbine aerodynamics and aeroelasticity. Prog Aerosp Sci 42: 285–330

    Article  Google Scholar 

  20. Jensen FM, Falzon BG, Ankersen J, Stang H (2006) Structural testing and numerical simulation of a 34 m composite wind turbine blade. Compos Struct 76: 52–61

    Article  Google Scholar 

  21. Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199: 2403–2416

    Article  MATH  Google Scholar 

  22. Bazilevs Y, Hsu M-C, Kiendl J, Benson DJ (2012) A computational procedure for prebending of wind turbine blades. Int J Num Methods Eng 89: 323–336

    Article  MATH  Google Scholar 

  23. Cárdenas D, Escárpita AA, Elizalde H, Aguirre JJ, Marzocca P, Ahuett H, Probst O (2012) Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade. Wind Energy 15: 203–223

    Article  Google Scholar 

  24. Hsu M-C, Akkerman I, Bazilevs Y (2012) Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment. Wind Energy (In review)

  25. Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. Int J Num Methods Fluids 65: 236–253

    Article  MATH  Google Scholar 

  26. Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43: 143–150

    Article  MathSciNet  MATH  Google Scholar 

  27. Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18: 397–412

    Article  MATH  Google Scholar 

  28. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174: 261–274

    Article  MATH  Google Scholar 

  29. Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190: 3189–3200

    Article  MATH  Google Scholar 

  30. Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8: 83–130

    Article  MATH  Google Scholar 

  31. Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36: 207–223

    Article  MathSciNet  MATH  Google Scholar 

  32. Bazilevs Y, Hsu MC, Scott MA (2012) Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2012.03.028

  33. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD finite elements, NURBS exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194: 4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  34. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester

    Google Scholar 

  35. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods. Comput Mech 43: 39–49

    Article  MATH  Google Scholar 

  36. Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid–structure interaction modeling of ringsail parachutes. Comput Mech 43: 133–142

    Article  MATH  Google Scholar 

  37. Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Num Methods Fluids 65: 271–285

    Article  MATH  Google Scholar 

  38. Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid–structure interaction modeling of parachute clusters. Int J Num Methods Fluids 65: 286–307

    Article  MATH  Google Scholar 

  39. Takizawa K, Spielman T, Tezduyar TE (2011) Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48: 345–364

    Article  MATH  Google Scholar 

  40. Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid–structure interactions. Arch Comput Methods Eng 19: 125–169

    Article  MathSciNet  Google Scholar 

  41. Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE–VMS and ST–VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction. Math Models Methods Appl Sci. doi:10.1142/S0218202512300025

  42. Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space–time and ALE-VMS techniques for patient-specific cardiovascular fluid–structure interaction modeling. Arch Comput Methods Eng 19: 171–225

    Article  MathSciNet  Google Scholar 

  43. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26

    Article  MathSciNet  MATH  Google Scholar 

  44. Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions. Comput Mech. doi:10.1007/s00466-012-0686-x

  45. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198: 3902–3914

    Article  MATH  Google Scholar 

  46. Nitsche J (1971) Uber ein variationsprinzip zur losung von Dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh Math Univ Hamburg 36: 9–15

    Article  MathSciNet  MATH  Google Scholar 

  47. Hansbo P, Hermansson J (2004) Nitsche’s method for coupling non-matching meshes in fluid-structure vibrational problems. Comput Mech 32: 134–139

    Article  Google Scholar 

  48. Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Num Anal 39: 1749–1779

    Article  MathSciNet  MATH  Google Scholar 

  49. Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid–structure interaction analysis with applications to arterial blood flow. Comput Mech 38: 310–322

    Article  MathSciNet  MATH  Google Scholar 

  50. Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput Mech 43: 3–37

    Article  MathSciNet  MATH  Google Scholar 

  51. Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534–3550

    Article  MathSciNet  MATH  Google Scholar 

  52. Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45: 77–89

    Article  MathSciNet  MATH  Google Scholar 

  53. Bazilevs Y, Hsu MC, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid–structure interaction simulation of cerebral aneurysms. Comput Mech 46: 3–16

    Article  MathSciNet  MATH  Google Scholar 

  54. Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9: 481–498

    Article  Google Scholar 

  55. Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen JG (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid–structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42: 131–150

    Google Scholar 

  56. Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid–structure interaction simulations. Finite Elem Anal Des 47: 593–599

    Article  MathSciNet  Google Scholar 

  57. Long CC, Hsu M-C, Bazilevs Y, Feinstein JA, Marsden AL (2012) Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int J Num Methods Biomed Eng 28: 512–527

    MathSciNet  Google Scholar 

  58. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32: 199–259

    Article  MathSciNet  MATH  Google Scholar 

  59. Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45: 217–284

    Article  MathSciNet  MATH  Google Scholar 

  60. Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59: 307–325

    Article  MATH  Google Scholar 

  61. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59: 85–99

    Article  MathSciNet  MATH  Google Scholar 

  62. Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190: 411–430

    Article  MATH  Google Scholar 

  63. Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Num Methods Fluids 43: 555–575

    Article  MathSciNet  MATH  Google Scholar 

  64. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In Stein E, de~Borst R, Hughes TJR, (eds) Encyclopedia of computational mechanics, vol 3, Fluids ch 2. Wiley, Weinheim

  65. Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Num Methods Fluids 54: 855–900

    Article  MathSciNet  MATH  Google Scholar 

  66. Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197: 173–201

    Article  MATH  Google Scholar 

  67. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199: 828–840

    Article  MathSciNet  MATH  Google Scholar 

  68. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196: 4853–4862

    Article  MathSciNet  MATH  Google Scholar 

  69. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199: 780–790

    Article  MathSciNet  MATH  Google Scholar 

  70. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. J Comput Phys 229: 3402–3414

    Article  MathSciNet  MATH  Google Scholar 

  71. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199: 229–263

    Article  MathSciNet  MATH  Google Scholar 

  72. Dö MR, Jü B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199: 264–275

    Article  MATH  Google Scholar 

  73. Cirak F, Ortiz M, Schrö P (2000) Subdivision surfaces: a new paradigm for thin shell analysis. Int J Num Methods Eng 47: 2039–2072

    Article  MATH  Google Scholar 

  74. Cirak F, Ortiz M (2001) Fully C 1-conforming subdivision elements for finite defomation thin shell analysis. Int J Num Methods Eng 51: 813–833

    Article  MATH  Google Scholar 

  75. Cirak F, Scott MJ, Antonsson EK, Ortiz M, Schrö P (2002) Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision. Comput Aided Des 34: 137–148

    Article  Google Scholar 

  76. Oñ E, Zarate F (2000) Rotation-free triangular plate and shell elements. International Journal for Numerical Methods in Engineering 47: 557–603

    Article  MathSciNet  MATH  Google Scholar 

  77. Oñ E, Flores FG (2005) Advances in the formulation of the rotation-free basic shell triangle. Comput Methods Appl Mech Eng 194: 2406–2443

    Article  MATH  Google Scholar 

  78. Benson DJ, Bazilevs Y, Hsu M-C, Hughes TJR (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200: 1367–1378

    Article  MathSciNet  MATH  Google Scholar 

  79. Nguyen-Thanh N, Kiendl J, Nguyen-Xuan H, Wüchner R, Bletzinger KU, Bazilevs Y, Rabczuk T (2011) Rotation-free isogeometric thin shell analysis using PHT-splines. Comput Methods Appl Mech Eng 200: 3410–3424

    Article  MATH  Google Scholar 

  80. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157: 95–114

    Article  MathSciNet  MATH  Google Scholar 

  81. Takizawa K, Tezduyar TE (2011) Multiscale space–time fluid–structure interaction techniques. Comput Mech 48: 247–267

    Article  MathSciNet  MATH  Google Scholar 

  82. Takizawa K Tezduyar TE (2012) Space–time fluid–structure interaction methods. Math Models Methods Appl Sc (To appear). doi:10.1142/S0218202512300013

  83. Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid–structure interactions with the space–time formulations. Comput Methods Appl Mech Eng 195: 5743–5753

    Article  MathSciNet  MATH  Google Scholar 

  84. Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195: 2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  85. Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics withimproved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375

    Article  MathSciNet  MATH  Google Scholar 

  86. Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190: 305–319

    Article  MathSciNet  MATH  Google Scholar 

  87. Tezduyar TE, Behr M, Mittal S, Johnson AA (1992) Computation of unsteady incompressible flows with the finite element methods: space–time formulations, iterative strategies and massively parallel implementations. In New methods in transient analysis. PVP-vol 246/AMD-vol 143, pp 7–24, ASME, New York

  88. Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36

    Article  Google Scholar 

  89. Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mechanics Eng 119: 73–94

    Article  MATH  Google Scholar 

  90. Jonkman JM (2009) Dynamics of offshore floating wind turbines: model development and verification. Wind Energy 12: 459–492

    Article  Google Scholar 

  91. Jonkman JM, Matha D (2011) Dynamics of offshore floating wind turbines: analysis of three concepts. Wind Energy 14: 557–569

    Article  Google Scholar 

  92. Lackner MA, Rotea MA (2011) Passive structural control of offshore wind turbines. Wind Energy 14: 373–388

    Article  Google Scholar 

  93. Nicklasson PJ, Homola MC, Virk MS, Sundsbø PA (2012) Performance losses due to ice accretion for a 5 MW wind turbine. Wind Energy 15: 379–389

    Article  Google Scholar 

  94. Chow R, van~Dam CP (2011) Verication of computational simulations of the NREL 5 MW rotor with a focus on inboard ow separation. Wind Energy. doi:10.1002/we.529

  95. Lackner MA (2012) An investigation of variable power collective pitch control for load mitigation of floating offshore wind turbines. Wind Energy. doi:10.1002/we.1500

  96. Sebastian T, Lackner MA (2012) Characterization of the unsteady aerodynamics of offshore floating wind turbines. Wind Energy. doi:10.1002/we.545

  97. Hsu M-C, Akkerman I, Bazilevs Y (2011) High-performance computing of wind turbine aerodynamics using isogeometric analysis. Comput Fluids 49: 93–100

    Article  Google Scholar 

  98. Hsu M-C (2012) Fluid–Structure Interaction Analysis of Wind Turbines PhD thesis. University of California, San Diego

  99. Hau E (2006) Wind turbines: fundamentals, technologies, application, economics, 2nd edn. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Bazilevs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, MC., Bazilevs, Y. Fluid–structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50, 821–833 (2012). https://doi.org/10.1007/s00466-012-0772-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0772-0

Keywords

Navigation