Skip to main content
Log in

Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The integration of transcriptomics and metabolomics can provide precise information on gene-to-metabolite networks for identifying the function of novel genes. The goal of this study was to identify novel gene functions involved in 2,3-butanediol (2,3-BDO) biosynthesis by a comprehensive analysis of the transcriptome and metabolome of five mutated Klebsiella pneumonia strains (∆wabG = SGSB100, ∆wabG∆budA = SGSB106, ∆wabG∆budB = SGSB107, ∆wabG∆budC = SGSB108, ∆wabG∆budABC = SGSB109). First, the transcriptomes of all five mutants were analyzed and the genes exhibiting reproducible changes in expression were determined. The transcriptome was well conserved among the five strains, and differences in gene expression occurred mainly in genes coding for 2,3-BDO biosynthesis (budA, budB, and budC) and the genes involved in the degradation of reactive oxygen, biosynthesis and transport of arginine, cysteine biosynthesis, sulfur metabolism, oxidoreductase reaction, and formate dehydrogenase reaction. Second, differences in the metabolome (estimated by carbon distribution, CO2 emission, and redox balance) among the five mutant strains due to gene alteration of the 2,3-BDO operon were detected. The functional genomics approach integrating metabolomics and transcriptomics in K. Pneumonia presented here provides an innovative means of identifying novel gene functions involved in 2,3-BDO biosynthesis metabolism and whole cell metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Köpke M, Mihalcea C, Liew F, Tizard JH, Ali MS, Conolly JJ et al (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475

    Article  Google Scholar 

  2. Syu MJ (2001) Biological production of 2,3-butanediol. a review. Appl Microbiol Biotechnol 83:358–363

    Google Scholar 

  3. Ji XJ, Huang H, Li S, Du J, Lian M (2008) Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett 30:731–734

    Article  CAS  Google Scholar 

  4. Xuewu G, Chunhong C, Yazhou W, Chaoqun L, Mingyue W et al (2014) Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2,3-butanediol production in Klebsiella pneumonia strain. Biotechnol Biofuels 7:44

    Article  Google Scholar 

  5. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  Google Scholar 

  6. Kim DK, Rathnasingh C, Song H, Lee HJ, Seung D et al (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192

    Article  CAS  Google Scholar 

  7. Zhang L, Yang Y, Sun J, Shen Y, Wei D et al (2010) Microbial production of 2,3-butanediol by a mutagenized strain of Serratia marcescens H30. Bioresour Technol 101:1961–1967

    Article  CAS  Google Scholar 

  8. Jung MY, Ng CY, Song H, Lee J, Oh MK (2012) Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production. Microb Biotechnol 95:461–469

    Article  CAS  Google Scholar 

  9. Zhang YP, Li Y, Du CY, Liu M, Cao ZA (2006) Inactivation of aldehyde dehydrogenase: a key factor for engineering 1, 3-propanediol production by Klebsiella pneumonia. Metab Eng 8:578–586

    Article  CAS  Google Scholar 

  10. Cheng KK, Liu HJ, Liu DH (2005) Multiple growth inhibition of Klebsiella pneumonia in 1, 3-propanediol fermentation. Biotechnol Lett 27:19–22

    Article  CAS  Google Scholar 

  11. Xu YZ, Guo NN, Zheng ZM, Ou XJ, Liu HJ et al (2009) Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumonia. Biotechnol Bioeng 104:965–972

    Article  CAS  Google Scholar 

  12. Zheng Y, Zhang HY, Zhao L, Wei LJ, Ma XY et al (2008) One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumonia. J Chem Technol Biotechnol 83:1409–1412

    Article  CAS  Google Scholar 

  13. Zeng AP, Ross A, Biebl H, Tag C, Günzel B et al (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumonia in glycerol fermentation. Biotechnol Bioeng 44:902–911

    Article  CAS  Google Scholar 

  14. Lu M, Park C, Lee S, Kim B, Oh MK et al (2013) The regulation of 2,3-butanediol synthesis in Klebsiella pneumonia as revealed by gene over-expressions and metabolic flux analysis. Bioprocess Biosyst Eng 37:343–353

    Article  Google Scholar 

  15. Converti A, Perego P, Del Borghi M (2003) Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng 82:370–377

    Article  CAS  Google Scholar 

  16. Ji XJ, Haung H, Zhu JG, Ren LJ, Nie ZK et al (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758

    Article  CAS  Google Scholar 

  17. Wood BE, Yomano LP, York SW, Ingram LO (2005) Development of industrial medium required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol Prog 21:1366–1372

    Article  CAS  Google Scholar 

  18. Chen YT, Liao TL, Wu KM, Lauderdale TL, Yan JJ et al (2009) Genomic diversity of citrate fermentation in Klebsiella pneumonia. BMC Microbiol 9:168

    Article  Google Scholar 

  19. Park J, Song H, Lee HJ, Seung D (2013) Genome-scale reconstruction and in silico analysis of Klebsiella oxytoca for 2,3-butanediol production. Microb Cell Fact 12:20

    Article  CAS  Google Scholar 

  20. Shin SH, Kim S, Kim JY, Lee S, Um Y et al (2012) Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumonia strain KCTC 2242. J Bacteriol 194:2736–2737

    Article  CAS  Google Scholar 

  21. Jung SG, Jang JH, Kim AY, Lim MC, Kim B et al (2013) Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl Microbiol Biotechnol 97:1997–2007

    Article  CAS  Google Scholar 

  22. Kim B, Lee S, Park J, Lu M, Oh MK et al (2012) Enhanced 2,3-butanediol production in recombinant Klebsiella pneumonia via overexpression of synthesis-related genes. J Microbiol Biotechnol 22:1258–1263

    Article  CAS  Google Scholar 

  23. Lee S, Kim B, Jeong D, Oh MK, Um Y et al (2013) Observation of 2,3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumonia at gene transcription level. J Biotechnol 168:520–526

    Article  CAS  Google Scholar 

  24. Gerhard G (1985) Bacterial metabolism. Springer, Berlin

    Google Scholar 

  25. Liao YC, Huang TW, Chen FC, Charusanti P, Hong JSJ et al (2011) An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumonia MGH 78578, iYL1228. J Bacteriol 193:1710–1717

    Article  CAS  Google Scholar 

  26. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  27. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  28. Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL et al (2014) Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumonia for 1,3-propanediol production. J Appl Microbiol 117:690–698

    Article  CAS  Google Scholar 

  29. Obinger C, Regelsberger G, Pircher A, Sevcik-Klöckler A, Strasser G, Peschek GA (1999) Hydrogen peroxide removal in Cyanobacteria: characterization of a catalase-peroxidase from Anacystis nidulans. In: Peschek GA, Löffelhardt W, Schmetterer G (eds) The phototrophic prokaryotes, chap 84. Springer, US, pp 719–731

    Chapter  Google Scholar 

  30. Wang W, Sun J, Hartlep M, Deckwer YD, Zeng AP (2003) Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 83:525–536

    Article  CAS  Google Scholar 

  31. Ji XJ, Xia ZF, Fu NH, Nie ZK, Shen MQ et al (2013) Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumonia. Biotechnol Biofuels 6:7

    Article  CAS  Google Scholar 

  32. Zhao H, Ma K, Lu Y, Zhang C, Wang L et al (2009) Cloning and knockout of formate hydrogen lyase and H2-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production. Int J Hydrogen Energy 34:186–194

    Article  Google Scholar 

  33. Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    CAS  Google Scholar 

  34. Lu CD (2006) Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl Microbiol Biotechno 70:261–272

    Article  CAS  Google Scholar 

  35. Friedrich B, Magasanik B (1978) Utilization of Arginine by Klebsiella aerogenes. J Bacteriol 133:680–685

    CAS  Google Scholar 

  36. Brenchley JE, Prival MJ, Magasani B (1973) Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Bacteriol 248:6122–6128

    CAS  Google Scholar 

  37. Wirtz M, Droux M (2005) Synthesis of the sulfur amino acids: cysteine and methionine. Photosynth Res 86:345–362

    Article  CAS  Google Scholar 

  38. Seilflein TA, Lawrence JG (2001) Methionine-to-cysteine recycling in Klebsiella aerogenes. J Bacteriol 183:336–346

    Article  Google Scholar 

  39. Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces c erevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  Google Scholar 

  40. Zhou D, White RH (1991) Transsulfuration in archaebacteria. J Bacteriol 173:3250–3251

    CAS  Google Scholar 

  41. Cheng K-K, Wu J, Wang G-Y, Li W-Y, Feng J, Zhang J-A (2013) Effects of pH and dissolved CO2 level on simultaneous production of 2,3-butanediol and succinic acid using Klebsiella pneumonia. Bioresour Technol 135:500–503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the R&D Program of MOTIE/KEIT (No. 10035578, Development of 2,3-Butanediol and Derivative Production Technology for C-Zero Bio-Platform Industry). This work was also supported by the Graduate School of Specialization for Biotechnology Program of the Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwon Lee.

Additional information

S. Lee and B. Kim contributed equally to this work.

J. Yang and D. Jeong also contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Kim, B., Yang, J. et al. Comparative whole genome transcriptome and metabolome analyses of five Klebsiella pneumonia strains. Bioprocess Biosyst Eng 38, 2201–2219 (2015). https://doi.org/10.1007/s00449-015-1459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1459-7

Keywords

Navigation