Skip to main content

Advertisement

Log in

Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with ‘humanized’ antigen presentation as a new preclinical study tool

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

With the cover headline ‘T cells on the attack,’ the journal Science celebrated individualized cancer immunotherapy by adoptive transfer of T cells as the ‘Breakthrough of the Year’ 2013 (J. Couzin-Frankel in Science 342:1432–1433, 2013). It is less well recognized and appreciated that individualized T cell immunotherapy of cytomegalovirus (CMV) infection is approaching clinical application for preventing CMV organ manifestations, interstitial CMV pneumonia in particular. This coincident medical development is particularly interesting as reactivated CMV infection is a major viral complication in the state of transient immunodeficiency after the therapy of hematopoietic malignancies by hematopoietic cell transplantation (HCT). It may thus be attractive to combine T cell immunotherapy of ‘minimal residual disease/leukemia (MRD)’ and CMV-specific T cell immunotherapy to combat both risks in HCT recipients simultaneously, and ideally with T cells derived from the respective HLA-matched HCT donor. Although clinical trials of human CMV-specific T cell immunotherapy were promising in that the incidence of virus reactivation and disease was found to be reduced with statistical significance, animal models are still instrumental for providing ‘proof of concept’ by directly documenting the prevention of viral multiple-organ histopathology and organ failure under controlled conditions of the absence versus presence of the therapy, which obviously is not feasible in an individual human patient. Further, animal models can make predictions regarding parameters that determine the efficacy of T cell immunotherapy for improved study design in clinical investigations, and they allow for manipulating host and virus genetics. The latter is of particular value as it opens the possibility for epitope specificity controls that are inherently missing in clinical trials. Here, we review a recently developed new mouse model that is more approximated to human CMV-specific T cell immunotherapy by ‘humanizing’ antigen presentation using antigenically chimeric CMV and HLA-transgenic mice to allow for an in vivo testing of the antiviral function of human CMV-specific T cells. As an important new message, this model predicts that T cell immunotherapy is most efficient if CD4 T cells are equipped with a transduced TCR directed against an epitope presented by MHC/HLA class-I for local delivery of ‘cognate’ help to CD8 effector T cells at infected MHC/HLA class-II-negative host tissue cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cannon MJ, Grosse SD, Fowler KB (2013) The epidemiology and public health impact of congenital cytomegalovirus infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 2, vol II. Caister Academic Press, Norfolk, pp 26–48

    Google Scholar 

  2. Boppana SB, Britt WJ (2013) Synopsis of clinical aspects of human cytomegalovirus disease. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 1, vol II. Caister Academic Press, Norfolk, pp 1–25

    Google Scholar 

  3. Ho M (2008) The history of cytomegalovirus and its diseases. Med Microbiol Immunol 197:65–73

    Article  PubMed  Google Scholar 

  4. Adler SP, Nigro G (2013) Clinical cytomegalovirus research: congenital infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 3, vol II. Caister Academic Press, Norfolk, pp 55–72

    Google Scholar 

  5. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  CAS  PubMed  Google Scholar 

  6. Grosse SD, Ortega-Sanchez IR, Bialek SR, Dollard SC (2013) The epidemiology and public health impact of congenital cytomegalovirus infection, chapter 2, vol II. Addendum, Caister Academic Press, Norfolk, pp 49–54

    Google Scholar 

  7. Roizman B, Sears AE (1987) An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol 41:543–571

    Article  CAS  PubMed  Google Scholar 

  8. Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Seckert CK, Renzaho A, Tervo HM, Krause C, Deegen P, Kühnapfel B, Reddehase MJ, Grzimek NK (2009) Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol 83:8869–8884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Poole E, Sinclair J (2015) Sleepless latency of human cytomegalovirus. Med Microbiol Immunol 204:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grzimek NK, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wills MR, Mason GM, Sissons JG (2013) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 7, vol II. Caister Academic Press, Norfolk, pp 141–171

    Google Scholar 

  16. Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:315–331

    CAS  PubMed  Google Scholar 

  17. Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NK, Reddehase MJ (2012) Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201:551–566

    Article  PubMed  Google Scholar 

  18. Reeves M, Sinclair J (2013) Epigenetic regulation of human cytomegalovirus gene expression: impact on latency and reactivation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 19, vol I. Caister Academic Press, Norfolk, pp 330–346

    Google Scholar 

  19. Slobedman B, Avdic S, Abendroth A (2013) Transcription associated with human cytomegalovirus latency. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 20, vol I. Caister Academic Press, Norfolk, pp 347–362

    Google Scholar 

  20. Reddehase MJ, Balthesen M, Rapp M, Jonjić S, Pavić I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193

    Article  CAS  PubMed  Google Scholar 

  21. Emery VC, Milne RS, Griffiths PD (2013) Clinical cytomegalovirus research: liver and kidney transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 14, vol II. Caister Academic Press, Norfolk, pp 299–309

    Google Scholar 

  22. Seo S, Boeckh M (2013) Clinical cytomegalovirus research: haematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, chapter 16, vol II. Caister Academic Press, Norfolk, pp 335–351

    Google Scholar 

  23. Sissons JG, Wills MR (2015) How understanding immunology contributes to managing CMV disease in immunosuppressed patients: now and in future. Med Microbiol Immunol 204:307–316

    Article  CAS  PubMed  Google Scholar 

  24. von Müller L, Mertens T (2008) Human cytomegalovirus infection and antiviral immunity in septic patients without canonical immunosuppression. Med Microbiol Immunol 197:75–82

    Article  Google Scholar 

  25. Mansfield S, Grießl M, Gutknecht M, Cook CH (2015) Sepsis and cytomegalovirus: foes or conspirators? Med Microbiol Immunol 204:431–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogel JU, Otte J, Koch F, Gümbel H, Doerr HW, Cinatl J Jr (2013) Role of human cytomegalovirus genotype polymorphisms in AIDS patients with cytomegalovirus retinitis. Med Microbiol Immunol 202:37–47

    Article  CAS  PubMed  Google Scholar 

  27. Emery VC (1998) Relative importance of cytomegalovirus load as a risk factor for cytomegalovirus disease in the immunocompromised host. In: Scholz M, Rabenau HF, Doerr HW, Cinatl J (eds) CMV-related immunopathology, vol 21. Karger, Basel, pp 288–301

    Chapter  Google Scholar 

  28. Quinnan GV, Kirmani N, Rook AH, Manischewitz JF, Jackson L, Moreschi G, Santos GW, Saral R, Burns WH (1982) Cytotoxic T cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med 307:7–13

    Article  PubMed  Google Scholar 

  29. Reusser P, Riddell SR, Meyers JD, Greenberg PD (1991) Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood 78:1373–1380

    CAS  PubMed  Google Scholar 

  30. Smith MG (1956) Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med 92:424–430

    Article  CAS  PubMed  Google Scholar 

  31. Reddehase MJ (2015) Margaret Gladys Smith, mother of cytomegalovirus: 60th anniversary of cytomegalovirus isolation. Med Microbiol Immunol 204:239–241

    Article  PubMed  Google Scholar 

  32. Ostermann E, Pawletko K, Indenbirken D, Schumacher U, Brune W (2015) Stepwise adaptation of murine cytomegalovirus to cells of a foreign host for identification of host range determinants. Med Microbiol Immunol 204:461–469

    Article  CAS  PubMed  Google Scholar 

  33. Reddehase MJ (2016) Mutual interference between cytomegalovirus and reconstitution of protective immunity after hematopoietic cell transplantation. Front Immunol 7:294

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–656

    Article  CAS  PubMed  Google Scholar 

  36. Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reddehase MJ, Jonjić S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134

    Article  PubMed  Google Scholar 

  40. Ebert S, Podlech J, Gillert-Marien D, Gergely KM, Büttner JK, Fink A, Freitag K, Thomas D, Reddehase MJ, Holtappels RP (2012) Parameters determining the efficacy of adoptive CD8 T-cell therapy of cytomegalovirus infection. Med Microbiol Immunol 201:527–539

    Article  PubMed  Google Scholar 

  41. Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653

    Article  CAS  PubMed  Google Scholar 

  42. Pahl-Seibert MF, Juelch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Böhm V, Podlech J, Thomas D, Deegen P, Pahl-Seibert MF, Lemmermann NA, Grzimek NK, Oehrlein-Karpi SA, Reddehase MJ, Holtappels R (2008) Epitope-specific in vivo protection against cytomegalovirus disease by CD8 T cells in the murine model of preemptive immunotherapy. Med Microbiol Immunol 197:135–144

    Article  PubMed  CAS  Google Scholar 

  44. Nauerth M, Weißbrich B, Knall R, Franz T, Dössinger G, Bet J, Paszkiewicz PJ, Pfeifer L, Uckert M, Holtappels R, Gillert-Marien D, Neuenhahn M, Krackhardt A, Reddehase MJ, Riddell SR, Busch DH (2013) TCR-ligand koff rate correlates with the protective capacity of antigen-specific CD8+ T cells for adoptive transfer. Sci Transl Med 5:192ra87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB (2008) Reddehase MJ (2008) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ebert S, Lemmermann NA, Thomas D, Renzaho A, Reddehase MJ, Holtappels R (2012) Immune control in the absence of immunodominant epitopes: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:541–550

    Article  CAS  PubMed  Google Scholar 

  47. Holtappels R, Lemmermann NA, Thomas D, Renzaho A, Reddehase MJ (2015) Identification of an atypical CD8 T cell epitope encoded by murine cytomegalovirus ORF-M54 gaining dominance after deletion of the immunodominant antiviral CD8 T cell specificities. Med Microbiol Immunol 204:317–326

    Article  CAS  PubMed  Google Scholar 

  48. Holtappels R, Lemmermann NA, Podlech J, Ebert S, Reddehase MJ (2016) Reconstitution of CD8 T cells protective against cytomegalovirus in a mouse model of hematopoietic cell transplantation: dynamics and inessentiality of epitope immunodominance. Front Immunol 7:232

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lemmermann NA, Fink A, Podlech J, Ebert S, Wilhelmi V, Böhm V, Holtappels R, Reddehase MJ (2012) Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 201:497–512

    Article  CAS  PubMed  Google Scholar 

  50. Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L (2015) Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol 204:367–382

    Article  CAS  PubMed  Google Scholar 

  51. Holtappels R, Podlech J, Pahl-Seibert MF, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Holtappels R, Thomas D, Reddehase MJ (2009) The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 83:9611–9615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lemmermann NA, Böhm V, Holtappels R, Reddehase MJ (2011) In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 157:161–174

    Article  CAS  PubMed  Google Scholar 

  54. Greenberg PD, Reusser P, Goodrich JM, Riddell SR (1991) Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann N Y Acad Sci 636:184–195

    Article  CAS  PubMed  Google Scholar 

  55. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241

    Article  CAS  PubMed  Google Scholar 

  56. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Löffler J, Grigoleit U, Moris A, Rammensee HG, Kanz L, Kleihauer A, Frank F, Jahn G, Hebart H (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99:3916–3922

    Article  CAS  PubMed  Google Scholar 

  57. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377

    Article  PubMed  Google Scholar 

  58. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, Mohty M, Or R, Maschan M, Schumm M, Hamprecht K, Handgretinger R, Lang P, Einsele H (2010) Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116:4360–4367

    Article  CAS  PubMed  Google Scholar 

  60. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, Ringhoffer M, Ringhoffer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599

    Article  CAS  PubMed  Google Scholar 

  61. Odendahl M, Grigoleit GU, Bönig H, Neuenhahn M, Albrecht J, Anderl F, Germeroth L, Schmitz M, Bornhäuser M, Einsele H, Seifried E, Busch DH, Tonn T (2014) Clinical-scale isolation of ‘minimally manipulated’ cytomegalovirus-specific donor lymphocytes for the treatment of refractory cytomegalovirus disease. Cytotherapy 16:1245–1256

    Article  PubMed  Google Scholar 

  62. Stemberger C, Graef P, Odendahl M, Albrecht J, Dössinger G, Anderl F, Buchholz VR, Gasteiger G, Schiemann M, Grigoleit GU, Schuster FR, Borkhardt A, Versluys B, Tonn T, Seifried E, Einsele H, Germeroth L, Busch DH, Neuenhahn M (2014) Lowest numbers of primary CD8(+) T cells can reconstitute protective immunity upon adoptive immunotherapy. Blood 124:628–637

    Article  CAS  PubMed  Google Scholar 

  63. Graef P, Buchholz VR, Stemberger C, Flossdorf M, Henkel L, Schiemann M, Drexler I, Höfer T, Riddell SR, Busch DH (2014) Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) central memory T cells. Immunity 41:116–126

    Article  CAS  PubMed  Google Scholar 

  64. Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR (2016) Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol 28:28–34

    Article  CAS  PubMed  Google Scholar 

  65. Thomas S, Klobuch S, Podlech J, Plachter B, Hoffmann P, Renzaho A, Theobald M, Reddehase MJ, Herr W, Lemmermann NA (2015) Evaluating human T-cell therapy of cytomegalovirus organ disease in HLA-transgenic mice. PLoS Pathog 11:e1005049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lemmermann NA, Kropp KA, Seckert CK, Grzimek NK, Reddehase MJ (2011) Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2011:812742

    Article  PubMed  CAS  Google Scholar 

  67. Messerle M, Keil GM, Koszinowski UH (1991) Structure and expression of murine cytomegalovirus immediate-early gene 2. J Virol 65:1638–1643

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cardin RD, Abenes GB, Stoddart CA, Mocarski ES (1995) Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 209:236–241

    Article  CAS  PubMed  Google Scholar 

  69. Busche A, Angulo A, Kay-Jackson P, Ghazal P, Messerle M (2008) Phenotypes of major immediate-early gene mutants of mouse cytomegalovirus. Med Microbiol Immunol 197:233–240

    Article  PubMed  Google Scholar 

  70. Dorsch-Häsler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82:8325–8329

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kropp KA, Simon CO, Fink A, Renzaho A, Kühnapfel B, Podlech J, Reddehase MJ, Grzimek NK (2009) Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues. J Gen Virol 90:2395–2401

    Article  CAS  PubMed  Google Scholar 

  72. Stinski MF, Isomura H (2008) Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 197:223–331

    Article  PubMed  Google Scholar 

  73. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70:7569–7579

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Waller EC, Day E, Sissons JG, Wills MR (2008) Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol 197:83–96

    Article  PubMed  Google Scholar 

  75. Del Val M, Schlicht HJ, Ruppert T, Reddehase MJ, Koszinowski UH (1991) Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 66:1145–1153

    Article  PubMed  Google Scholar 

  76. Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M, Doi T, Sone A, Suzuki N, Fujiwara H, Yasukawa M, Ishikawa F (2010) Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci USA 107:13022–13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Podlech J, Reddehase MJ, Adler B, Lemmermann NA (2015) Principles for studying in vivo attenuation of virus mutants: defining the role of the cytomegalovirus gH/gL/gO complex as a paradigm. Med Microbiol Immunol 204:295–305

    Article  CAS  PubMed  Google Scholar 

  78. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Holtappels R, Janda J, Thomas D, Schenk S, Reddehase MJ, Geginat G (2008) Adoptive CD8 T cell control of pathogens cannot be improved by combining protective epitope specificities. J Infect Dis 197:622–629

    Article  PubMed  Google Scholar 

  80. Wilkinson GW, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, Seirafian S, Wang EC, Weekes M, Lehner PJ, Wilkie GS, Stanton RJ (2015) Human cytomegalovirus: taking the strain. Med Microbiol Immunol 204:273–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Renzette N, Pokalyuk C, Gibson L, Bhattacharjee B, Schleiss MR, Hamprecht K, Yamamoto AY, Mussi-Pinhata MM, Britt WJ, Jensen JD, Kowalik TF (2015) Limits and patterns of cytomegalovirus genomic diversity in humans. Proc Natl Acad Sci USA 112:E4120–E4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Renzette N, Gibson L, Bhattacharjee B, Fisher D, Schleiss MR, Jensen JD, Kowalik TF (2013) Rapid intrahost evolution of human cytomegalovirus is shaped by demography and positive selection. PLoS Genet 9:e1003735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Renzette N, Gibson L, Jensen JD, Kowalik TF (2014) Human cytomegalovirus intrahost evolution—a new avenue for understanding and controlling herpesvirus infections. Curr Opin Virol 8:109–115

    Article  PubMed  Google Scholar 

  84. Kershaw MH, Westwood JA, Darcy PK (2013) Gene-engineered T cells for cancer therapy. Nat Rev Cancer 13:525–541

    Article  CAS  PubMed  Google Scholar 

  85. Rosenberg SA, Restifo NP (2015) Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348:62–68

    Article  CAS  PubMed  Google Scholar 

  86. Schub A, Schuster IG, Hammerschmidt W, Moosmann A (2009) CMV-specific TCR-transgenic T cells for immunotherapy. J Immunol 183:6819–6830

    Article  CAS  PubMed  Google Scholar 

  87. Thomas S, Klobuch S, Besold K, Plachter B, Dorrie J, Schaft N, Theobald M, Herr W (2012) Strong and sustained effector function of memory- versus naive-derived T cells upon T-cell receptor RNA transfer: implications for cellular therapy. Eur J Immunol 42:3442–3453

    Article  CAS  PubMed  Google Scholar 

  88. Alterio de Goss M, Holtappels R, Steffens HP, Podlech J, Angele P, Dreher L, Thomas D, Reddehase MJ (1998) Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J Virol 72:7733–7744

    Google Scholar 

  89. Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3:263–272

    Article  CAS  PubMed  Google Scholar 

  91. Ebert S, Becker M, Lemmermann NA, Büttner JK, Michel A, Taube C, Podlech J, Böhm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M (2014) Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 10:e1004100

    Article  PubMed  PubMed Central  Google Scholar 

  92. Podlech J, Ebert S, Becker M, Reddehase MJ, Stassen M, Lemmermann NA (2015) Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection. Med Microbiol Immunol 204:327–334

    Article  CAS  PubMed  Google Scholar 

  93. Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104

    Article  CAS  PubMed  Google Scholar 

  94. Ameres S, Liang X, Wiesner M, Mautner J, Moosmann A (2015) A diverse repertoire of CD4 T cells targets the immediate-early 1 protein of human cytomegalovirus. Front Immunol 6:598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101:2686–2692

    Article  CAS  PubMed  Google Scholar 

  96. Gratama JW, Brooimans RA, van der Holt B, Sintnicolaas K, van Doornum G, Niesters HG, Löwenberg B, Cornelissen JJ (2008) Monitoring cytomegalovirus IE-1 and pp65-specific CD4+ and CD8+ T-cell responses after allogeneic stem cell transplantation may identify patients at risk for recurrent CMV reactivations. Cytom B Clin Cytom 74:211–220

    Article  CAS  Google Scholar 

  97. Gabanti E, Bruno F, Lilleri D, Fornara C, Zelini P, Cane I, Migotto C, Sarchi E, Furione M, Gerna G (2014) Human cytomegalovirus (HCMV)-specific CD4+ and CD8+ T cells are both required for prevention of HCMV disease in seropositive solid-organ transplant recipients. PLoS One 9:e106044

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fink A, Lemmermann NA, Gillert-Marien D, Thomas D, Freitag K, Böhm V, Wilhelmi V, Reifenberg K, Reddehase MJ, Holtappels R (2012) Antigen presentation under the influence of ‘immune evasion’ proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:513–525

    Article  CAS  PubMed  Google Scholar 

  99. Couzin-Frankel J (2013) Cancer Immunotherapy. Science 342(6165):1432–1433

    Article  CAS  PubMed  Google Scholar 

  100. Grundy JE, Super M, Lui S, Sweny P, Griffiths PD (1987) The source of cytomegalovirus infection in seropositive renal allograft recipients is frequently the donor kidney. Transplant Proc 19:2126–2128

    CAS  PubMed  Google Scholar 

  101. Kim SJ, Varghese TK, Zhang Z, Zhao LC, Thomas G, Hummel M, Abecassis M (2005) Renal ischemia/reperfusion injury activates the enhancer domain of the human cytomegalovirus major immediate early promoter. Am J Transplant 5:1606–1613

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Review Article is based on the work that was funded by the Deutsche Forschungsgemeinschaft in the Clinical Research Group KFO 183.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias J. Reddehase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemmermann, N.A.W., Reddehase, M.J. Refining human T-cell immunotherapy of cytomegalovirus disease: a mouse model with ‘humanized’ antigen presentation as a new preclinical study tool. Med Microbiol Immunol 205, 549–561 (2016). https://doi.org/10.1007/s00430-016-0471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-016-0471-0

Keywords

Navigation