Skip to main content

Advertisement

Log in

Dynamics of T cell memory in human cytomegalovirus infection

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Primary human cytomegalovirus (HCMV) infection of an immunocompetent individual leads to the generation of a robust CD4+ and CD8+ T cell response which subsequently controls viral replication. HCMV is never cleared from the host and enters into latency with periodic reactivation and viral replication, which is controlled by reactivation of the memory T cells. In this article, we discuss the magnitude, phenotype and clonality of the T cell response following primary HCMV infection, the selection of responding T cells into the long-term memory pool and maintenance of this memory T cell population in the face of a latent/persistent infection. The article also considers the effect that this long-term surveillance of HCMV has on the T cell memory phenotype, their differentiation, function and the associated concepts of T cell memory inflation and immunosenescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaech SM, Hemby S, Kersh E, Ahmed R (2002) Molecular and functional prolfiling of memory CD8 T cell differentiation. Cell 111:837–851

    Article  CAS  PubMed  Google Scholar 

  2. Kalia V, Sarkar S, Gourley TS, Rouse BT, Ahmed R (2006) Differentiation of memory B and T cells. Curr Opin Immunol 18(3):255–264

    Article  CAS  PubMed  Google Scholar 

  3. Borysiewicz LK, Morris S, Page JD, Sissons JG (1983) Human cytomegalovirus-specific cytotoxic T lymphocytes: requirements for in vitro generation and specificity. Eur J Immunol 13(10):804–809

    Article  CAS  PubMed  Google Scholar 

  4. Borysiewicz LK, Hickling JK, Graham S, Sinclair J, Cranage MP, Smith GL, Sissons JG (1988) Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med 168(3):919–931

    Article  CAS  PubMed  Google Scholar 

  5. McLaughlin Taylor E, Pande H, Forman SJ, Tanamachi B, Li CR, Zaia JA, Greenberg PD, Riddell SR (1994) Identification of the major late human cytomegalovirus matrix protein pp65 as a target antigen for CD8+ virus-specific cytotoxic T lymphocytes. J Med Virol 43(1):103–110 issn: 0146–6615

    Article  CAS  PubMed  Google Scholar 

  6. Wills MR, Carmichael AJ, Sissons JGP (2006) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (eds) Cytomegaloviruses: molecular biology and immunology. Caister Academic press, Wymondham, pp 341–366

  7. Boppana SB, Britt WJ (1996) Recognition of human cytomegalovirus gene products by HCMV-specific cytotoxic T cells. Virology 222(1):293–296

    Article  CAS  PubMed  Google Scholar 

  8. Kern F, Surel IP, Brock C, Freistedt B, Radtke H, Scheffold A, Blasczyk R, Reinke P, Schneider-Mergener J, Radbruch A, Walden P, Volk HD (1998) T-cell epitope mapping by flow cytometry. Nat Med 4(8):975–978

    Article  CAS  PubMed  Google Scholar 

  9. Wills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, Sissons JG (1996) The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol 70(11):7569–7579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Davrinche C (2006) Combat between cytomegalovirus and dendritic cells in T-cell priming. In: M.J. Reddehase (Eds) Cytomegaloviruses: molecular biology and immunology. Caister Academic press, Wymondham, pp 367–382

  12. Arrode G, Boccaccio C, Lule J, Allart S, Moinard N, Abastado JP, Alam A, Davrinche C (2000) Incoming human cytomegalovirus pp65 (UL83) contained in apoptotic infected fibroblasts is cross-presented to CD8(+) T cells by dendritic cells. J Virol 74(21):10018–10024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tabi Z, Moutaftsi M, Borysiewicz LK (2001) Human cytomegalovirus pp65- and immediate early 1 antigen-specific HLA class I-restricted cytotoxic T cell responses induced by cross-presentation of viral antigens. J Immunol 166(9):5695–5703

    Article  CAS  PubMed  Google Scholar 

  14. Weekes MP, Wills MR, Mynard K, Carmichael AJ, Sissons JG (1999) The memory cytotoxic T-lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo. J Virol 73(3):2099–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khan N, Cobbold M, Keenan R, Moss PA (2002) Comparative analysis of CD8+ T cell responses against human cytomegalovirus proteins pp65 and immediate early 1 shows similarities in precursor frequency, oligoclonality, and phenotype. J Infect Dis 185(8):1025–1034

    Article  CAS  PubMed  Google Scholar 

  16. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PA (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169(4):1984–1992

    Article  CAS  PubMed  Google Scholar 

  17. Wills MR, Carmichael AJ, Weekes MP, Mynard K, Okecha G, Hicks R, Sissons JG (1999) Human virus-specific CD8+ CTL clones revert from CD45ROhigh to CD45RAhigh in vivo: CD45RAhighCD8+ T cells comprise both naive and memory cells. J Immunol 162(12):7080–7087

    Article  CAS  PubMed  Google Scholar 

  18. Wills MR, Okecha G, Weekes MP, Gandhi MK, Sissons PJ, Carmichael AJ (2002) Identification of naive or antigen-experienced human CD8(+) T cells by expression of costimulation and chemokine receptors: analysis of the human cytomegalovirus-specific CD8(+) T cell response. J Immunol 168(11):5455–5464

    Article  CAS  PubMed  Google Scholar 

  19. Gillespie GM, Wills MR, Appay V, O’Callaghan C, Murphy M, Smith N, Sissons P, Rowland-Jones S, Bell JI, Moss PA (2000) Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol 74(17):8140–8150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257(5067):238–241

    Article  CAS  PubMed  Google Scholar 

  21. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362(9393):1375–1377

    Article  PubMed  Google Scholar 

  22. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333(16):1038–1044

    Article  CAS  PubMed  Google Scholar 

  23. Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J, Goldman J, Craddock C, Moss PA (2001) Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 97(5):1232–1240

    Article  CAS  PubMed  Google Scholar 

  24. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Loffler J, Grigoleit U, Moris A, Rammensee HG, Kanz L, Kleihauer A, Frank F, Jahn G, Hebart H (2002) Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 99(11):3916–3922

    Article  CAS  PubMed  Google Scholar 

  25. Reddehase MJ, Mutter W, Munch K, Buhring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61(10):3102–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74(16):7496–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Polic B, Hengel H, Krmpotic A, Trgovcich J, Pavic I, Luccaronin P, Jonjic S, Koszinowski UH (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med 188(6):1047–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barnes PD, Grundy JE (1992) Down-regulation of the class I HLA heterodimer and beta 2-microglobulin on the surface of cells infected with cytomegalovirus. J Gen Virol 73(Pt 9):2395–2403

    Article  CAS  PubMed  Google Scholar 

  29. Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction [see comments]. Nature 384(6608):432–438

    Article  CAS  PubMed  Google Scholar 

  30. Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84(5):769–779

    Article  CAS  PubMed  Google Scholar 

  31. Jones TR, Hanson LK, Sun L, Slater JS, Stenberg RM, Campbell AE (1995) Multiple independent loci within the human cytomegalovirus unique short region down-regulate expression of major histocompatibility complex class I heavy chains. J Virol 69(8):4830–4841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL (1996) Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci USA 93(21):11327–11333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P (1997) The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc Natl Acad Sci USA 94(13):6904–6909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, Peterson PA, Yang Y, Fruh K (1997) The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6(5):613–621

    Article  CAS  PubMed  Google Scholar 

  35. Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172(11):6944–6953

    Article  CAS  PubMed  Google Scholar 

  36. Khan N, Bruton R, Taylor GS, Cobbold M, Jones TR, Rickinson AB, Moss PA (2005) Identification of cytomegalovirus-specific cytotoxic T lymphocytes in vitro is greatly enhanced by the use of recombinant virus lacking the US2 to US11 region or modified vaccinia virus Ankara expressing individual viral genes. J Virol 79(5):2869–2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holtappels R, Podlech J, Pahl-Seibert MF, Julch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199(1):131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kern F, Surel IP, Faulhaber N, Frommel C, Schneider-Mergener J, Schonemann C, Reinke P, Volk HD (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73(10):8179–8184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Besold K, Frankenberg N, Pepperl-Klindworth S, Kuball J, Theobald M, Hahn G, Plachter B (2007) Processing and MHC class I presentation of human cytomegalovirus pp65-derived peptides persist despite gpUS2–11-mediated immune evasion. J Gen Virol 88(Pt 5):1429–1439

    Article  CAS  PubMed  Google Scholar 

  40. Manley TJ, Luy L, Jones T, Boeckh M, Mutimer H, Riddell SR (2004) Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood 104(4):1075–1082

    Article  CAS  PubMed  Google Scholar 

  41. Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood 101(7):2686–2692

    Article  CAS  PubMed  Google Scholar 

  42. Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalo-virus adrenalitis in the immunocompromised host: Cd4-helper-independent antiviral function of Cd8-positive memory lymphocytes-T derived from latently infected donors. J Virol 62(3):1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kern F, Bunde T, Faulhaber N, Kiecker F, Khatamzas E, Rudawski IM, Pruss A, Gratama JW, Volkmer-Engert R, Ewert R, Reinke P, Volk HD, Picker LJ (2002) Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T cell repertoire in CMV-exposed individuals. J Infect Dis 185(12):1709–1716

    Article  CAS  PubMed  Google Scholar 

  44. Davignon JL, Clement D, Alriquet J, Michelson S, Davrinche C (1995) Analysis of the proliferative T cell response to human cytomegalovirus major immediate-early protein (IE1): phenotype, frequency and variability. Scand J Immunol 41(3):247–255

    Article  CAS  PubMed  Google Scholar 

  45. Beninga J, Kropff B, Mach M (1995) Comparative analysis of fourteen individual human cytomegalovirus proteins for helper T cell response. J Gen Virol 76(Pt 1):153–160

    Article  CAS  PubMed  Google Scholar 

  46. Davignon JL, Castanie P, Yorke JA, Gautier N, Clement D, Davrinche C (1996) Anti-human cytomegalovirus activity of cytokines produced by CD4+ T-cell clones specifically activated by IE1 peptides in vitro. J Virol 70(4):2162–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Elkington R, Shoukry NH, Walker S, Crough T, Fazou C, Kaur A, Walker CM, Khanna R (2004) Cross-reactive recognition of human and primate cytomegalovirus sequences by human CD4 cytotoxic T lymphocytes specific for glycoprotein B and H. Eur J Immunol 34(11):3216–3226

    Article  CAS  PubMed  Google Scholar 

  48. Weekes MP, Wills MR, Sissons JG, Carmichael AJ (2004) Long-term stable expanded human CD4+ T cell clones specific for human cytomegalovirus are distributed in both CD45RAhigh and CD45ROhigh populations. J Immunol 173(9):5843–5851

    Article  CAS  PubMed  Google Scholar 

  49. Bitmansour AD, Douek DC, Maino VC, Picker LJ (2002) Direct ex vivo analysis of human CD4(+) memory T cell activation requirements at the single clonotype level. J Immunol 169(3):1207–1218

    Article  CAS  PubMed  Google Scholar 

  50. Rentenaar RJ, Gamadia LE, van DerHoek N, van Diepen FN, Boom R, Weel JF, Wertheim-van Dillen PM, van Lier RA, ten Berge IJ (2000) Development of virus-specific CD4(+) T cells during primary cytomegalovirus infection. J Clin Invest 105(4):541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. van Leeuwen EM, Remmerswaal EB, Vossen MT, Rowshani AT, Wertheim -van Dillen PM, van Lier RA, ten Berge IJ (2004) Emergence of a CD4+CD28− granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J Immunol 173(3):1834–1841

    Article  PubMed  Google Scholar 

  52. Miller DM, Cebulla CM, Rahill BM, Sedmak DD (2001) Cytomegalovirus and transcriptional down-regulation of major histocompatibility complex class II expression. Semin Immunol 13(1):11–18

    Article  CAS  PubMed  Google Scholar 

  53. Kuijpers TW, Vossen MT, Gent MR, Davin JC, Roos MT, Wertheim-van Dillen PM, Weel JF, Baars PA, van Lier RA (2003) Frequencies of circulating cytolytic, CD45RA+CD27−, CD8+ T lymphocytes depend on infection with CMV. J Immunol 170(8):4342–4348

    Article  CAS  PubMed  Google Scholar 

  54. van Leeuwen EM, Gamadia LE, Baars PA, Remmerswaal EB, ten Berge IJ, van Lier RA (2002) Proliferation requirements of cytomegalovirus-specific, effector-type human CD8+ T cells. J Immunol 169(10):5838–5843

    Article  PubMed  Google Scholar 

  55. van Leeuwen E, van Buul JD, Remmerswaal EBM, Hordijk PL, ten Berge IJ, van Lier RA (2005) Functional re-expression of CCR7 on CMV-specific CD8+ T cells upon antigenic stimulation. Int Immunol 17:713–719

    Article  PubMed  Google Scholar 

  56. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, Ogg GS, King A, Lechner F, Spina CA, Little S, Havlir DV, Richman DD, Gruener N, Pape G, Waters A, Easterbrook P, Salio M, Cerundolo V, McMichael AJ, Rowland-Jones SL (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–85

    Article  CAS  PubMed  Google Scholar 

  57. Kern F, Khatamzas E, Surel I, Frommel C, Reinke P, Waldrop SL, Picker LJ, Volk HD (1999) Distribution of human CMV-specific memory T cells among the CD8pos. Subsets defined by CD57, CD27, and CD45 isoforms. Eur J Immunol 29(9):2908–2915

    Article  CAS  PubMed  Google Scholar 

  58. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, Casazza JP, Kuruppu J, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101(7):2711–2720

    Article  CAS  PubMed  Google Scholar 

  59. Pittet MJ, Speiser DE, Valmori D, Cerottini JC, Romero P (2000) Cutting edge: cytolytic effector function in human circulating CD8+ T cells closely correlates with CD56 surface expression. J Immunol 164(3):1148–1152

    Article  CAS  PubMed  Google Scholar 

  60. Speiser DE, Colonna M, Ayyoub M, Cella M, Pittet MJ, Batard P, Valmori D, Guillaume P, Lienard D, Cerottini JC, Romero P (2001) The activatory receptor 2B4 is expressed in vivo by human CD8+ effector alpha beta T cells. J Immunol 167(11):6165–6170

    Article  CAS  PubMed  Google Scholar 

  61. Voehringer D, Koschella M, Pircher H (2002) Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1). Blood 100(10):3698–3702

    Article  CAS  PubMed  Google Scholar 

  62. Ibegbu CC, Xu YX, Harris W, Maggio D, Miller JD, Kourtis AP (2005) Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J Immunol 174(10):6088–6094

    Article  CAS  PubMed  Google Scholar 

  63. Northfield J, Lucas M, Jones H, Young NT, Klenerman P (2005) Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8+ T cells correlates with “memory inflation” in human cytomegalovirus infection. Immunol Cell Biol 83:182–188

    Article  CAS  PubMed  Google Scholar 

  64. Antrobus RD, Khan N, Hislop AD, Montamat D-Sicotte, Garner LI, Rickinson AB, Moss PA, Willcox BE (2005) Virus-specific cytotoxic T lymphocytes differentially express cell-surface leukocyte immunoglobulin-like receptor-1, an inhibitory receptor for class I major histocompatibility complex molecules. J Infect Dis 191(11):1842–1853

    Article  CAS  PubMed  Google Scholar 

  65. Gandhi MK, Wills MR, Okecha G, Day EK, Hicks R, Marcus RE, Sissons JG, Carmichael AJ (2003) Late diversification in the clonal composition of human cytomegalovirus-specific CD8+ T cells following allogeneic hemopoietic stem cell transplantation. Blood 102(9):3427–3438

    Article  CAS  PubMed  Google Scholar 

  66. van Leeuwen EM, Koning JJ, Remmerswaal EB, van Baarle D, van Lier RA, ten Berge IJ (2006) Differential usage of cellular niches by cytomegalovirus versus EBV- and influenza virus-specific CD8+ T cells. J Immunol 177(8):4998–5005

    Article  PubMed  Google Scholar 

  67. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, van Lier RA (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 186(9):1407–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chan KS, Kaur A (2007) Flow cytometric detection of degranulation reveals phenotypic heterogeneity of degranulating CMV-specific CD8+ T lymphocytes in rhesus macaques. J Immunol Methods 325(1–2):20–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vallejo AN (2005) CD28 extinction in human T cells: altered functions and the program of T-cell senescence. Immunol Rev 205:158–169

    Article  CAS  PubMed  Google Scholar 

  70. Azuma M, Phillips JH, Lanier LL (1993) CD28− T lymphocytes. Antigenic and functional properties. J Immunol 150(4):1147–1159

    Article  CAS  PubMed  Google Scholar 

  71. Posnett DN, Edinger JW, Manavalan JS, Irwin C, Marodon G (1999) Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28− cytotoxic effector clones. Int Immunol 11(2):229–241

    Article  CAS  PubMed  Google Scholar 

  72. Fagnoni FF, Vescovini R, Mazzola M, Bologna G, Nigro E, Lavagetto G, Franceschi C, Passeri M, Sansoni P (1996) Expansion of cytotoxic CD8+ CD28− T cells in healthy ageing people, including centenarians. Immunology 88(4):501–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Effros RB, Boucher N, Porter V, Zhu X, Spaulding C, Walford RL, Kronenberg M, Cohen D, Schachter F (1994) Decline in CD28+ T cells in centenarians and in long-term T cell cultures: a possible cause for both in vivo and in vitro immunosenescence. Exp Gerontol 29(6):601–609

    Article  CAS  PubMed  Google Scholar 

  74. Effros RB, Allsopp R, Chiu CP, Hausner MA, Hirji K, Wang L, Harley CB, Villeponteau B, West MD, Giorgi JV (1996) Shortened telomeres in the expanded CD28−CD8+ cell subset in HIV disease implicate replicative senescence in HIV pathogenesis. Aids 10(8):F17–F22

    Article  CAS  PubMed  Google Scholar 

  75. Hazzan M, Labalette M, Noel C, Lelievre G, Dessaint JP (1997) Recall response to cytomegalovirus in allograft recipients: mobilization of CD57+, CD28+ cells before expansion of CD57+, CD28− cells within the CD8+ T lymphocyte compartment. Transplantation 63(5):693–698

    Article  CAS  PubMed  Google Scholar 

  76. Weekes MP, Carmichael AJ, Wills MR, Mynard K, Sissons JG (1999) Human CD28−CD8+ T cells contain greatly expanded functional virus-specific memory CTL clones. J Immunol 162(12):7569–7577

    Article  CAS  PubMed  Google Scholar 

  77. Day EK, Carmichael AJ, Ten Berge IJ, Waller EC, Sissons JG, Wills MR (2007) Rapid CD8+ T Cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J Immunol 179(5):3203–3213

    Article  CAS  PubMed  Google Scholar 

  78. van Leeuwen EM, de Bree GJ, ten Berge IJ, van Lier RA (2006) Human virus-specific CD8+ T cells: diversity specialists. Immunol Rev 211:225–235

    Article  PubMed  Google Scholar 

  79. Marchant A, Appay V, Van Der Sande M, Dulphy N, Liesnard C, Kidd M, Kaye S, Ojuola O, Gillespie GM, Vargas Cuero AL, Cerundolo V, Callan M, McAdam KP, Rowland-Jones SL, Donner C, McMichael AJ, Whittle H (2003) Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 111(11):1747–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Miles DJ, vander Sande M, Jeffries D, Kaye S, Ismaili J, Ojuola O, Sanneh M, Touray ES, Waight P, Rowland-Jones S, Whittle H, Marchant A (2007) Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J Virol 81(11):5766–5776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. van Leeuwen EM, de Bree GJ, Remmerswaal EB, Yong SL, Tesselaar K, ten Berge IJ, van Lier RA (2005) IL-7 receptor alpha chain expression distinguishes functional subsets of virus-specific human CD8+ T cells. Blood 106(6):2091–2098

    Article  PubMed  Google Scholar 

  82. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4(12):1191–1198

    Article  CAS  PubMed  Google Scholar 

  83. Huster KM, Busch V, Schiemann M, Linkemann K, Kerksiek KM, Wagner H, Busch DH (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci USA 101(15):5610–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Weekes MP, Wills MR, Mynard K, Hicks R, Sissons JG, Carmichael AJ (1999) Large clonal expansions of human virus-specific memory cytotoxic T lymphocytes within the CD57+ CD28− CD8+ T-cell population. Immunology 98(3):443–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sourdive DJ, Murali K Krishna, Altman JD, Zajac AJ, Whitmire JK, Pannetier C, Kourilsky P, Evavold B, Sette A, Ahmed R (1998) Conserved T cell repertoire in primary and memory CD8 T cell responses to an acute viral infection. J Exp Med 188:71–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blattman JN, Sourdive DJ, Murali-Krishna K, Ahmed R, Altman JD (2000) Evolution of the T cell repertoire during primary, memory, and recall responses to viral infection. J Immunol 165(11):6081–6090

    Article  CAS  PubMed  Google Scholar 

  87. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 170(4):2022–2029

    Article  CAS  PubMed  Google Scholar 

  88. Pahl-Seibert MF, Juelch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79(9):5400–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trautmann L, Rimbert M, Echasserieau K, Saulquin X, Neveu B, Dechanet J, Cerundolo V, Bonneville M (2005) Selection of T cell clones expressing high-affinity public TCRs within human cytomegalovirus-specific CD8 T cell responses. J Immunol 175(9):6123–6132

    Article  CAS  PubMed  Google Scholar 

  90. Lawson TM, Man S, Wang ECY, Williams S, Amos N, Gillespie GM, Moss PA, Borysiewcz LK (2001) Functional differences between influenza A-specific cytotoxic T lymphocyte clones expressing dominant and subdominant TCR. Int Immunol 13(11):1383–1390

    Article  CAS  PubMed  Google Scholar 

  91. Fujii Y, Okumura M, Inada K, Nakahara K (1992) Reversal of CD45R isoform switching in CD8+ T cells. Cell Immunol 139(1):176–184

    Article  CAS  PubMed  Google Scholar 

  92. Michie CA, McLean A, Alcock C, Beverley PC (1992) Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360(6401):264–265

    Article  CAS  PubMed  Google Scholar 

  93. Sparshott SM, Bell EB (1994) Membrane CD45R isoform exchange on CD4 T cells is rapid, frequent and dynamic in vivo. Eur J Immunol 24(11):2573–2578

    Article  CAS  PubMed  Google Scholar 

  94. Bell EB, Sparshott SM (1990) Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 348(6297):163–166

    Article  CAS  PubMed  Google Scholar 

  95. Monteiro M, Evaristo C, Legrand A, Nicoletti A, Rocha B (2007) Cartography of gene expression in CD8 single cells: novel CCR7− subsets suggest differentiation independent of CD45RA expression. Blood 109(7):2863–2870

    Article  CAS  PubMed  Google Scholar 

  96. Geginat G, Lanzavecchia A, Sallusto F (2003) Proliferation and differentiation potential of human CD8+ memory T cell subsets in response to antigen or homeostatic cytokines. Blood 101:4260–4266

    Article  CAS  PubMed  Google Scholar 

  97. Dunne PJ, Belaramani L, Fletcher JM, Fernandez S de Mattos, Lawrenz M, Soares MV, Rustin MH, Lam EW, Salmon M, Akbar AN (2005) Quiescence and functional reprogramming of Epstein-Barr virus (EBV)-specific CD8+ T cells during persistent infection. Blood 106(2):558–565

    Article  CAS  PubMed  Google Scholar 

  98. Carrasco J, Godelaine D, Van Pel A, Boon T, vander Bruggen P (2006) CD45RA on human CD8 T cells is sensitive to the time elapsed since the last antigenic stimulation. Blood 108(9):2897–2905

    Article  CAS  PubMed  Google Scholar 

  99. Borthwick NJ, Lowdell M, Salmon M, Akbar AN (2000) Loss of CD28 expression on CD8(+) T cells is induced by IL-2 receptor gamma chain signalling cytokines and type I IFN, and increases susceptibility to activation-induced apoptosis. Int Immunol 12(7):1005–1013

    Article  CAS  PubMed  Google Scholar 

  100. Kim YJ, Brutkiewicz RR, Broxmeyer HE (2002) Role of 4–1BB (CD137) in the functional activation of cord blood CD28(−)CD8(+) T cells. Blood 100(9):3253–3260

    Article  CAS  PubMed  Google Scholar 

  101. Alves NL, Arosa FA, van Lier RA (2005) IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J Immunol 175(2):755–762

    Article  CAS  PubMed  Google Scholar 

  102. Labalette M, Leteurtre E, Thumerelle C, Grutzmacher C, Tourvieille B, Dessaint JP (1999) Peripheral human CD8(+)CD28(+)T lymphocytes give rise to CD28(−)progeny, but IL-4 prevents loss of CD28 expression. Int Immunol 11(8):1327–1336

    Article  CAS  PubMed  Google Scholar 

  103. Scheuring UJ, Sabzevari H, Theofilopoulos AN (2002) Proliferative arrest and cell cycle regulation in CD8(+)CD28(−) versus CD8(+)CD28(+) T cells. Hum Immunol 63(11):1000–1009

    Article  CAS  PubMed  Google Scholar 

  104. Borthwick NJ, Bofill M, Gombert WM, Akbar AN, Medina E, Sagawa K, Lipman MC, Johnson MA, Janossy G (1994) Lymphocyte activation in HIV-1 infection. II. Functional defects of CD28− T cells. AIDS 8(4):431–441

    Article  CAS  PubMed  Google Scholar 

  105. Lewis DE, Yang L, Luo W, Wang X, Rodgers JR (1999) HIV-specific cytotoxic T lymphocyte precursors exist in a CD28−CD8+ T cell subset and increase with loss of CD4 T cells. AIDS 13(9):1029–1033

    Article  CAS  PubMed  Google Scholar 

  106. Brinchmann JE, Dobloug JH, Heger BH, Haaheim LL, Sannes M, Egeland T (1994) Expression of costimulatory molecule CD28 on T cells in human immunodeficiency virus type 1 infection: functional and clinical correlations. J Infect Dis 169(4):730–738

    Article  CAS  PubMed  Google Scholar 

  107. Vingerhoets JH, Vanham GL, Kestens LL, Penne GG, Colebunders RL, Vandenbruaene MJ, Goeman J, Gigase PL, De Boer M, Ceuppens JL (1995) Increased cytolytic T lymphocyte activity and decreased B7 responsiveness are associated with CD28 down-regulation on CD8+ T cells from HIV-infected subjects. Clin Exp Immunol 100(3):425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fiorentino S, Dalod M, Olive D, Guillet JG, Gomard E (1996) Predominant involvement of CD8+CD28− lymphocytes in human immunodeficiency virus-specific cytotoxic activity. J Virol 70(3):2022–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, Nobile M, Appay V, Rizzardi GP, Fleury S, Lipp M, Forster R, Rowland-Jones S, Sekaly RP, McMichael AJ, Pantaleo G (2001) Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410(6824):106–111

    Article  CAS  PubMed  Google Scholar 

  110. Dunne PJ, Faint JM, Gudgeon NH, Fletcher JM, Plunkett FJ, Soares MV, Hislop AD, Annels NE, Rickinson AB, Salmon M, Akbar AN (2002) Epstein-Barr virus-specific CD8(+) T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood 100(3):933–940

    Article  CAS  PubMed  Google Scholar 

  111. Waller EC, McKinney N, Hicks R, Carmichael AJ, Sissons JG, Wills MR (2007) Differential costimulation through CD137 (4 1BB) restores proliferation of human virus-specific “effector memory” (CD28 CD45RAHI) CD8+ T cells. Blood 110(13):4360–4366

    Article  CAS  PubMed  Google Scholar 

  112. Topp MS, Riddell SR, Akatsuka Y, Jensen MC, Blattman JN, Greenberg PD (2003) Restoration of CD28 expression in CD28− CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J Exp Med 198(6):947–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Valenzuela HF, Effros RB (2002) Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 105(2):117–125

    Article  CAS  PubMed  Google Scholar 

  114. Monteiro J, Batliwalla F, Ostrer H, Gregersen PK (1996) Shortened telomeres in clonally expanded CD28−CD8+ T cells imply a replicative history that is distinct from their CD28+CD8+ counterparts. J Immunol 156(10):3587–3590

    Article  CAS  PubMed  Google Scholar 

  115. Weng NP, Levine BL, June CH, Hodes RJ (1995) Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA 92(24):11091–11094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rufer N, Brummendorf TH, Kolvraa S, Bischoff C, Christensen K, Wadsworth L, Schulzer M, Lansdorp PM (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190(2):157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hamann D, Kostense S, Wolthers KC, Otto SA, Baars PA, Miedema F, van Lier RA (1999) Evidence that human CD8+CD45RA+CD27− cells are induced by antigen and evolve through extensive rounds of division. Int Immunol 11(7):1027–1033

    Article  CAS  PubMed  Google Scholar 

  118. Plunkett FJ, Franzese O, Finney HM, Fletcher JM, Belaramani LL, Salmon M, Dokal I, Webster D, Lawson AD, Akbar AN (2007) The loss of telomerase activity in highly differentiated CD8+CD28−CD27− T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol 178(12):7710–7719

    Article  CAS  PubMed  Google Scholar 

  119. Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74(24):11495–11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76(1):151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karrer U, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P (2003) Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol 171(7):3895

    Article  CAS  Google Scholar 

  122. Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177(1):450–458

    Article  CAS  PubMed  Google Scholar 

  123. Khan N Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, Rickinson AB, Moss PA (2004) Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173(12):7481–7489

    Article  PubMed  Google Scholar 

  124. Wallace DL, Zhang Y, Ghattas H, Worth A, Irvine A, Bennett AR, Griffin GE, Beverley PC, Tough DF, Macallan DC (2004) Direct measurement of T cell subset kinetics in vivo in elderly men and women. J Immunol 173(3):1787–1794

    Article  CAS  PubMed  Google Scholar 

  125. Ouyang Q, Wagner WM, Zheng W, Wikby A, Remarque EJ, Pawelec G (2004) Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol 39(4):607–613

    Article  CAS  PubMed  Google Scholar 

  126. Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, Travers P, Pawelec G (2003) Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol 23(4):247–257

    Article  CAS  PubMed  Google Scholar 

  127. Akbar AN, Fletcher JM (2005) Memory T cell homeostasis and senescence during aging. Curr Opin Immunol 17(5):480–485

    Article  CAS  PubMed  Google Scholar 

  128. Koch S, Solana R, Dela Rosa O, Pawelec G (2006) Human cytomegalovirus infection and T cell immunosenescence: a mini review. Mech Ageing Dev 127(6):538–543

    Article  CAS  PubMed  Google Scholar 

  129. Trzonkowski P, Mysliwska J, Szmit E, Wieckiewicz J, Lukaszuk K, Brydak LB, Machala M, Mysliwski A (2003) Association between cytomegalovirus infection, enhanced proinflammatory response and low level of anti-hemagglutinins during the anti-influenza vaccination-an impact of immunosenescence. Vaccine 21(25–26):3826–3836

    Article  CAS  PubMed  Google Scholar 

  130. Saurwein-Teissl M, Lung TL, Marx F, Gschosser C, Asch E, Blasko I, Parson W, Bock G, Schonitzer D, Trannoy E, Grubeck-Loebenstein B (2002) Lack of antibody production following immunization in old age: association with CD8(+)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168(11):5893–5899

    Article  CAS  PubMed  Google Scholar 

  131. Goronzy JJ, Fulbright JW, Crowson CS, Poland GA, O’Fallon WM, Weyand CM (2001) Value of immunological markers in predicting responsiveness to influenza vaccination in elderly individuals. J Virol 75(24):12182–12187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Looney RJ, Falsey A, Campbell D, Torres A, Kolassa J, Brower C, McCann R, Menegus M, McCormick K, Frampton M, Hall W, Abraham GN (1999) Role of cytomegalovirus in the T cell changes seen in elderly individuals. Clin Immunol 90(2):213–219

    Article  CAS  PubMed  Google Scholar 

  133. Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37(2–3):445–453

    Article  CAS  PubMed  Google Scholar 

  134. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S, Nilsson BO, Ernerudh J, Pawelec G, Johansson B (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565

    Article  PubMed  Google Scholar 

  135. Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121(1–3):187–201

    CAS  PubMed  Google Scholar 

  136. Hadrup SR, Strindhall J, Kollgaard T, Seremet T, Johansson B, Pawelec G, thor Straten P, Wikby A (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176(4):2645–2653

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Wills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waller, E.C.P., Day, E., Sissons, J.G.P. et al. Dynamics of T cell memory in human cytomegalovirus infection. Med Microbiol Immunol 197, 83–96 (2008). https://doi.org/10.1007/s00430-008-0082-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-008-0082-5

Keywords

Navigation