Skip to main content

Advertisement

Log in

Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Low public awareness of cytomegalovirus (CMV) results from the only mild and transient symptoms that it causes in the healthy immunocompetent host, so that primary infection usually goes unnoticed. The virus is not cleared, however, but stays for the lifetime of the host in a non-infectious, replicatively dormant state known as ‘viral latency’. Medical interest in CMV results from the fact that latent virus can reactivate to cytopathogenic, tissue-destructive infection causing life-threatening end-organ disease in immunocompromised recipients of solid organ transplantation (SOT) or hematopoietic cell transplantation (HCT). It is becoming increasingly clear that CMV latency is not a static state in which the viral genome is silenced at all its genetic loci making the latent virus immunologically invisible, but rather is a dynamic state characterized by stochastic episodes of transient viral gene desilencing. This gene expression can lead to the presentation of antigenic peptides encoded by ‘antigenicity-determining transcripts expressed in latency (ADTELs)’ sensed by tissue-patrolling effector-memory CD8 T cells for immune surveillance of latency [In Reddehase et al., Murine model of cytomegalovirus latency and reactivation, Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315–331, 2008]. A hallmark of the CD8 T cell response to CMV is the observation that with increasing time during latency, CD8 T cells specific for certain viral epitopes increase in numbers, a phenomenon that has gained much attention in recent years and is known under the catchphrase ‘memory inflation.’ Here, we provide a unifying hypothesis linking stochastic viral gene desilencing during latency to ‘memory inflation.’

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

The references marked with an asterisk result from the work within project part E2 of the collaborative research center (SFB) 490.

  1. Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II, chap 16. Caister Academic Press, Norfolk, UK (in press)

  2. Avery RK (2013) Clinical cytomegalovirus research: thoracic organ transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II, chap 13. Caister Academic Press, Norfolk, UK (in press)

  3. Emery VC, Milne RS, Griffiths PD (2013) Clinical cytomegalovirus research: liver and kidney transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II, chap 14. Caister Academic Press, Norfolk, UK (in press)

  4. Reeves M, Sinclair J (2008) Aspects of human cytomegalovirus latency and reactivation. In: Shenk TE, Stinski MF (eds) Human cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 297–314

  5. Reeves M, Sinclair J (2013) Epigenetic regulation of human cytomegalovirus gene expression: impact on latency and reactivation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 19. Caister Academic Press, Norfolk, UK (in press)

  6. Slobedman B, Avdic S, Abendroth A (2013) Transcription associated with human cytomegalovirus latency. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 20. Caister Academic Press, Norfolk, UK (in press)

  7. Smith MS, Streblow DN, Caposio P, Nelson JA (2013) Humanized mouse models of cytomegalovirus pathogenesis and latency. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 23. Caister Academic Press, Norfolk, UK (in press)

  8. *Reddehase MJ, Podlech J, Grzimek NK (2002) Mouse models of cytomegalovirus: overview. J Clin Virol 25:S23–S36

    Article  PubMed  CAS  Google Scholar 

  9. Hummel M, Abecassis MM (2002) A model for reactivation of CMV from latency. J Clin Virol 25:S123–S136

    Article  PubMed  Google Scholar 

  10. *Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. In: Shenk TE, Stinski MF (eds) Human cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315–331

  11. *Seckert CK, Grießl M, Büttner JK, Freitag K, Lemmermann NA, Hummel MA, Liu XF, Abecassis MI, Angulo A, Messerle M, Cook CH, Reddehase MJ (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to “memory inflation”. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 22. Caister Academic Press, Norfolk, UK (in press)

  12. Emery VC (1998) Relative importance of cytomegalovirus load as a risk factor for cytomegalovirus disease in the immunocompromised host. In: Scholz M, Rabenau HF, Doerr HW, Cinatl J Jr (eds) Monographs in virology 21: CMV-related immunopathology. Karger, Basel, pp 288–301

    Google Scholar 

  13. Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 1. Caister Academic Press, Norfolk, UK (in press)

  14. Adler B, Sinzger C (2013) Cytomegalovirus inter-strain variance in cell-type tropism. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 17. Caister Academic Press, Norfolk, UK (in press)

  15. Mercer JA, Wiley CA, Spector DH (1988) Pathogenesis of murine cytomegalovirus infection: identification of infected cells in the spleen during acute and latent infection. J Virol 62:987–997

    PubMed  CAS  Google Scholar 

  16. Pomeroy C, Hilleren PJ, Jordan MC (1991) Latent murine cytomegalovirus DNA in splenic stromal cells of mice. J Virol 65:3330–3334

    PubMed  CAS  Google Scholar 

  17. Koffron AJ, Hummel M, Patterson BK, Yan S, Kaufmann DB, Fryer JP, Stuart FP, Abecassis MI (1998) Cellular localization of latent murine cytomegalovirus. J Virol 72:95–103

    PubMed  CAS  Google Scholar 

  18. Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67:5360–5366

    PubMed  CAS  Google Scholar 

  19. Reddehase MJ, Balthesen M, Rapp M, Jonjić S, Pavić I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193

    Article  PubMed  CAS  Google Scholar 

  20. Kurz SK, Rapp M, Steffens HP, Grzimek NKA, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494

    PubMed  CAS  Google Scholar 

  21. *Seckert CK, Renzaho A, Reddehase MJ, Grzimek NK (2008) Hematopoietic stem cell transplantation with latently infected donors does not transmit virus to immunocompromised recipients in the murine model of cytomegalovirus infection. Med Microbiol Immunol 197:251–259

    Article  PubMed  Google Scholar 

  22. Daley-Bauer LP, Mocarski ES (2013) Myeloid cell recruitment and function in cytomegalovirus immunity and pathogenesis. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 21. Caister Academic Press, Norfolk, UK (in press)

  23. *Marquardt A, Halle S, Seckert CK, Lemmermann NA, Veres TZ, Braun A, Maus UA, Förster R, Reddehase MJ, Messerle M, Busche A (2011) Single cell detection of latent cytomegalovirus reactivation in host tissue. J Gen Virol 92:1279–1291

    Article  PubMed  CAS  Google Scholar 

  24. *Seckert CK, Renzaho A, Tervo HM, Krause C, Deegen P, Kühnapfel B, Reddehase MJ, Grzimek NKA (2009) Liver sinusoidal endothelial cells are a site of murine cytomegalovirus latency and reactivation. J Virol 83:8869–8884

    Article  PubMed  CAS  Google Scholar 

  25. Roizman B, Sears AE (1987) An inquiry into the mechanisms of herpes simplex virus latency. Annu Rev Microbiol 41:543–571

    Article  PubMed  CAS  Google Scholar 

  26. *Sacher T, Podlech J, Mohr CA, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) The major virus-producing cell type during murine cytomegalovirus infection, the hepatocyte, is not the source of virus dissemination in the host. Cell Host Microbe 3:263–272

    Article  PubMed  CAS  Google Scholar 

  27. *Sacher T, Andrassy J, Kalnins A, Dölken L, Jordan S, Podlech J, Ruzsics Z, Jauch KW, Reddehase MJ, Koszinowski UH (2011) Shedding light on the elusive role of endothelial cells in cytomegalovirus dissemination. PLoS Pathog 7:e1002366

    Article  PubMed  CAS  Google Scholar 

  28. *Kern M, Popov A, Scholz K, Schumak B, Djandji D, Limmer A, Eggle D, Sacher T, Zawatzky R, Holtappels R, Reddehase MJ, Hartmann G, Debey-Pascher S, Diehl L, Kalinke U, Koszinowski U, Schultze J, Knolle PA (2010) Virally infected mouse liver endothelial cells trigger CD8+ T-cell immunity. Gastroenterology 138:336–346

    Article  PubMed  CAS  Google Scholar 

  29. Stinski MF, Petrik DT (2008) Functional roles of the human cytomegalovirus essential IE86 protein. In: Shenk TE, Stinski MF (eds) Human cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 133–152

  30. Meier JL, Stinski MF (2013) Major immediate-early enhancers and its gene products. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 10. Caister Academic Press, Norfolk, UK (in press)

  31. Mocarski ES Jr, Hahn G, Lofgren White K, Xu J, Slobedman B, Hertel L, Aguirre SA, Noda S (2006) Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase MJ (ed) Cytomegaloviruses. Caister Academic Press, Norfolk (UK), pp 465–481

    Google Scholar 

  32. White KL, Slobedman B, Mocarski ES (2000) Human cytomegalovirus latency-associated protein pORF94 is dispensable for productive and latent infection. J Virol 74:9333–9337

    Article  PubMed  CAS  Google Scholar 

  33. Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987

    PubMed  CAS  Google Scholar 

  34. Meyers JD, Flournoy N, Thomas ED (1982) Nonbacterial pneumonia after allogeneic marrow transplantation: a review of ten years’ experience. Rev Infect Dis 4:1119–1132

    Article  PubMed  CAS  Google Scholar 

  35. Zaia JA (1993) Prevention and treatment of cytomegalovirus pneumonia in transplant recipients. Clin Infect Dis 17:S392–S399

    Article  PubMed  Google Scholar 

  36. Riddell SR (1995) Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Semin Respir Infect 10:199–208

    PubMed  CAS  Google Scholar 

  37. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    PubMed  CAS  Google Scholar 

  38. Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ (1998) Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 72:7201–7212

    PubMed  CAS  Google Scholar 

  39. *Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507

    Article  PubMed  CAS  Google Scholar 

  40. Cook CH, Zhang Y, Sedmak DD, Martin LC, Jewell S, Ferguson RM (2006) Pulmonary cytomegalovirus reactivation causes pathology in immunocompetent mice. Crit Care Med 34:842–849

    Article  PubMed  Google Scholar 

  41. *Grzimek NKA, Dreis D, Schmalz S, Reddehase MJ (2001) Random, asynchronous, and asymmetric transcriptional activity of enhancer-flanking major immediate-early genes ie1/3 and ie2 during murine cytomegalovirus latency in the lungs. J Virol 75:2692–2705

    Article  PubMed  CAS  Google Scholar 

  42. *Simon CO, Seckert CK, Dreis D, Reddehase MJ, Grzimek NK (2005) Role for tumor necrosis factor alpha in murine cytomegalovirus transcriptional reactivation in latently infected lungs. J Virol 79:326–340

    Article  PubMed  CAS  Google Scholar 

  43. *Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456

    Article  PubMed  CAS  Google Scholar 

  44. *Simon CO, Kühnapfel B, Reddehase MJ, Grzimek NKA (2007) Murine cytomegalovirus major immediate-early enhancer region operating as a genetic switch in bidirectional gene pair transcription. J Virol 81:7805–7810

    Article  PubMed  CAS  Google Scholar 

  45. *Simon CO, Seckert CK, Grzimek NKA, Reddehase MJ (2006) Murine model of cytomegalovirus latency and reactivation: the silencing/desilencing and immune sening hypothesis. In: Reddehase MJ (ed) Cytomegaloviruses. Caister Academic Press, Norfolk (UK), pp 483–500

    Google Scholar 

  46. Boshart M, Weber F, Jahn G, Dorsch-Häsler K, Fleckenstein B, Schaffner W (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530

    Article  PubMed  CAS  Google Scholar 

  47. Dorsch-Häsler K, Keil GM, Weber F, Jasin M, Schaffner W, Koszinowski UH (1985) A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci USA 82:8325–8329

    Article  PubMed  Google Scholar 

  48. Stinski MF, Isomura H (2008) Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 197:223–231

    Article  PubMed  Google Scholar 

  49. Keil GM, Ebeling-Keil A, Koszinowski UH (1987) Immediate-early genes of murine cytomegalovirus: location, transcripts, and translation products. J Virol 61:526–533

    PubMed  CAS  Google Scholar 

  50. Keil GM, Ebeling-Keil A, Koszinowski UH (1987) Sequence and structural organization of murine cytomegalovirus immediate-early gene 1. J Virol 61:1901–1908

    PubMed  CAS  Google Scholar 

  51. Messerle M, Keil GM, Koszinowski UH (1991) Structure and expression of murine cytomegalovirus immediate-early gene 2. J Virol 65:1638–1643

    PubMed  CAS  Google Scholar 

  52. Messerle M, Bühler B, Keil GM, Koszinowski UH (1992) Structural organization, expression, and functional characterization of the murine cytomegalovirus immediate-early gene 3. J Virol 66:27–36

    PubMed  CAS  Google Scholar 

  53. Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109:807–809

    Article  PubMed  CAS  Google Scholar 

  54. Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM (2004) An abundance of bidirectional promoters in the human genome. Genome Res 14:62–66

    Article  PubMed  CAS  Google Scholar 

  55. Li YY, Yu H, Guo ZM, Guo TQ, Tu K, Li YX (2006) Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. PLoS Comput Biol 2:e74

    Article  PubMed  Google Scholar 

  56. Redwood AJ, Shellam GR, Smith LM (2013) Molecular evolution of murine cytomegalovirus genomes. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 2. Caister Academic Press, Norfolk, UK (in press)

  57. Busche A, Angulo A, Kay-Jackson P, Ghazal P, Messerle M (2008) Phenotypes of major immediate-early gene mutants of mouse cytomegalovirus. Med Microbiol Immunol 197:233–240

    Article  PubMed  Google Scholar 

  58. Angulo A, Ghazal P, Messerle M (2000) The major immediate-early gene ie3 of mouse cytomegalovirus is essential for viral growth. J Virol 74:11129–11136

    Article  PubMed  CAS  Google Scholar 

  59. Gribaudo G, Riera L, Lembo D, De Andrea M, Gariglio M, Rudge TL, Johnson LF, Landolfo S (2000) Murine cytomegalovirus stimulates cellular thymidylate synthase gene expression in quiescent cells and requires the enzyme for replication. J Virol 74:4979–4987

    Article  PubMed  CAS  Google Scholar 

  60. Lembo D, Gribaudo G, Hofer A, Riera L, Cornaglia M, Mondo A, Angeretti A, Gariglio M, Thelander L, Landolfo S (2000) Expression of an altered ribonucleotide reductase activity associated with the replication of murine cytomegalovirus in quiescent cells. J Virol 74:11557–11565

    Article  PubMed  CAS  Google Scholar 

  61. *Wilhelmi V, Simon CO, Podlech J, Böhm V, Däubner T, Emde S, Strand D, Renzaho A, Lemmermann NAW, Seckert CK, Reddehase MJ, Grzimek NKA (2008) Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues. J Virol 82:9900–9916

    Article  PubMed  CAS  Google Scholar 

  62. Maul GG (2008) Initiation of cytomegalovirus infection at ND10. In: Shenk TE, Stinski MF (eds) Human cytomegalovirus. Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 117–132

  63. Ghazal P, Visser AE, Gustems M, Garcia R, Borst EM, Sullivan K, Messerle M, Angulo A (2005) Elimination of ie1 significantly attenuates murine cytomegalovirus virulence but does not alter replicative capacity in cell culture. J Virol 79:7182–7194

    Article  PubMed  CAS  Google Scholar 

  64. *Rodríguez-Martín S, Kropp K, Wilhelmi V, Juranic Lisnic V, Yuan Hsieh W, Blanc M, Livingston A, Busche A, Tekotte H, Messerle M, Auer M, Jonjic S, Angulo A, Reddehase MJ, Ghazal P (2012) Ablation of the regulatory IE1 protein of murine cytomegalovirus alters in vivo pro-inflammatory TNF-alpha production during acute infection. PLoS Pathog 8:e1002901

    Google Scholar 

  65. Cardin RD, Abenes GB, Stoddart CA, Mocarski ES (1995) Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 209:236–241

    Article  PubMed  CAS  Google Scholar 

  66. Chatellard P, Pankiewicz R, Meier E, Durrer L, Sauvage C, Imhof MO (2007) The IE2 promoter/enhancer region from mouse CMV provides high levels of therapeutic protein expression in mammalian cells. Biotechnol Bioeng 96:106–117

    Article  PubMed  CAS  Google Scholar 

  67. *Kropp KA, Simon CO, Fink A, Renzaho A, Kühnapfel B, Podlech J, Reddehase MJ, Grzimek NKA (2009) Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues. J Gen Virol 90:2395–2401

    Article  PubMed  CAS  Google Scholar 

  68. Angulo A, Messerle M, Koszinowski UH, Ghazal P (1998) Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol 72:8502–8509

    PubMed  CAS  Google Scholar 

  69. Ghazal P, Messerle M, Osborn K, Angulo A (2003) An essential role of the enhancer for murine cytomegalovirus in vivo growth and pathogenesis. J Virol 77:3217–3322

    Article  PubMed  CAS  Google Scholar 

  70. *Podlech J, Pintea R, Kropp KA, Fink A, Lemmermann NAW, Erlach KC, Isern E, Angulo A, Ghazal P, Reddehase MJ (2010) Enhancerless cytomegalovirus is capable of establishing a low-level maintenance infection in severe immunodeficient host tissues but fails in exponential growth. J Virol 84:6254–6261

    Article  PubMed  CAS  Google Scholar 

  71. Wang D, Bodovitz S (2010) Single cell analysis: the new frontier in “Omics”. Trends Biotechnol 28:281–290

    Article  PubMed  CAS  Google Scholar 

  72. Toriello NM, Douglas ES, Thaitrong N, Hsiao SC, Francis MB, Bertozzi CR, Mathies RA (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci USA 105:20173–20178

    Article  PubMed  CAS  Google Scholar 

  73. *Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology: immunology of infection. Academic Press, London, pp 369–420

    Chapter  Google Scholar 

  74. Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804

    PubMed  CAS  Google Scholar 

  75. *Böhm V, Seckert CK, Simon CO, Thomas D, Renzaho A, Gendig D, Holtappels R, Reddehase MJ (2009) Immune evasion proteins enhance cytomegalovirus latency in the lungs. J Virol 83:10293–10298

    Article  PubMed  Google Scholar 

  76. Thomas M, Reuter N, Stamminger T (2013) Multifaceted regulation of human cytomegalovirus gene expression. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol I, chap 11. Caister Academic Press, Norfolk, UK, (in press)

  77. Hummel M, Zhang Z, Yan S, DePlaen I, Golia P, Varghese T, Thomas G, Abecassis MI (2001) Allogeneic transplantation induces expression of cytomegalovirus immediate-early gene in vivo: a model for reactivation from latency. J Virol 75:4814–4822

    Article  PubMed  CAS  Google Scholar 

  78. Cook CH, Zhang Y, McGuinness BJ, Lahm MC, Sedmak DD, Ferguson RM (2002) Intra-abdominal bacterial infection reactivates latent pulmonary cytomegalovirus in immunocompetent mice. J Infect Dis 185:1395–1400

    Article  PubMed  Google Scholar 

  79. Cook CH, Trgovcich J, Zimmerman PD, Zhang Y, Sedmak DD (2006) Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1beta triggers reactivation of latent cytomegalovirus in immunocompetent mice. J Virol 80:9151–9158

    Article  PubMed  CAS  Google Scholar 

  80. Kurz SK, Reddehase MJ (1999) Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol 73:8612–8622

    PubMed  CAS  Google Scholar 

  81. Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653

    Article  PubMed  CAS  Google Scholar 

  82. *Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  PubMed  CAS  Google Scholar 

  83. Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371

    Article  PubMed  CAS  Google Scholar 

  84. *Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp 89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503

    Article  PubMed  CAS  Google Scholar 

  85. *Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–160

    Article  PubMed  CAS  Google Scholar 

  86. Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458

    PubMed  CAS  Google Scholar 

  87. *Lemmermann NA, Kropp KA, Seckert CK, Grzimek NK, Reddehase MJ (2011) Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2011:812742

    PubMed  Google Scholar 

  88. Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41:2612–2618

    Article  PubMed  CAS  Google Scholar 

  89. Torti N, Walton SM, Brocker T, Rülicke T, Oxenius A (2011) Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog 7:e1002313

    Article  PubMed  CAS  Google Scholar 

  90. *Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R (2011) Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 92:1994–2005

    Article  PubMed  CAS  Google Scholar 

  91. Karrer U, Wagner M, Sierro S, Oxenius A, Hengel H, Dumrese T, Freigang S, Koszinowski UH, Phillips RE, Klenerman P (2004) Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses. J Virol 78:2255–2264

    Article  PubMed  CAS  Google Scholar 

  92. Jarvis MA, Hansen SG, Nelson JA, Picker LJ, Früh K (2013) Vaccine vectors using the unique biology and immunology of cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II, chap 21. Caister Academic Press, Norfolk, UK (in press)

Download references

Acknowledgments

We thank all current and former members of our group for their contributions made over the past 12 years as well as our collaboration partners Ulrich H. Koszinowski (Munich, Germany), Martin Messerle (Hannover, Germany), Ann B. Hill and Michael Munks (Portland, Oregon), Peter Ghazal (Edinburgh, Scotland), and Stipan Jonjic (Rijeka, Croatia) for advice, discussion, and tools. We appreciated the excellent service provided by Dennis Strand and Steffen Lorenz, ‘Confocal Laser Scanning Microscope Core Facility’ of the ‘Immunology Research Center’ at the University Medical Center of the Johannes Gutenberg-University Mainz. This work was funded by the Deutsche Forschungsgemeinschaft, SFB 490, individual project E2 ‘Immunological control of latent cytomegalovirus infection.’ C.K.S. received intramural funding in the young investigator program MAIFOR of the University Medical Center of the Johannes Gutenberg-University, Mainz. J.K.B. received a ‘Gender Equality Program’ scholarship from the ‘Immunology Research Center’ (Forschungszentrum Immunologie, FZI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias J. Reddehase.

Additional information

Christof K. Seckert, Marion Grießl and Julia K. Büttner have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seckert, C.K., Grießl, M., Büttner, J.K. et al. Viral latency drives ‘memory inflation’: a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 201, 551–566 (2012). https://doi.org/10.1007/s00430-012-0273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0273-y

Keywords

Navigation