Skip to main content

Advertisement

Log in

Immune control in the absence of immunodominant epitopes: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Adoptive transfer of virus-specific donor-derived CD8 T cells is a therapeutic option to prevent cytomegalovirus (CMV) disease in recipients of hematopoietic cell transplantation. Due to their high coding capacity, human as well as animal CMVs have the potential to encode numerous CD8 T cell epitopes. Although the CD8 T cell response to CMVs is indeed broadly specific in that it involves epitopes derived from almost every open reading frame when tested for cohorts of immune CMV carriers representing the polymorphic MHC/HLA distribution in the population, the response in any one individual is directed against relatively few epitopes selected by the private combination of MHC/HLA alleles. Of this individually selected set of epitopes, few epitopes are ‘immunodominant’ in terms of magnitude of the response directed against them, while others are ‘subdominant’ according to this definition. In the assumption that ‘immunodominance’ indicates ‘relevance’ in antiviral control, research interest was focused on the immunodominant epitopes (IDEs) and their potential use in immunotherapy and in vaccines. The murine model has provided ‘proof of concept’ for the efficacy of CD8 T cell therapy of CMV infection. By experimental modulation of the CD8 T cell ‘immunome’ of murine CMV constructing an IDE deletion mutant, we have used this established cytoimmunotherapy model (a) for evaluating the actual contribution of IDEs to the control of infection and (b) for answering the question whether antigenicity-determining codon polymorphisms in IDE-encoding genes of CMV strains impact on the efficacy of CD8 T cell immunotherapy in case the donor and the recipient harbor different CMV strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Greenberg PD, Reusser P, Goodrich JM, Riddell SR (1991) Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann N Y Acad Sci 636:184–195

    Article  PubMed  CAS  Google Scholar 

  2. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241

    Article  PubMed  CAS  Google Scholar 

  3. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1995) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  PubMed  CAS  Google Scholar 

  4. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1375–1377

    Article  PubMed  Google Scholar 

  5. Einsele H, Hamprecht K (2003) Immunotherapy of cytomegalovirus infection after stem-cell transplantation: a new option? Lancet 362:1343–1344

    Article  PubMed  Google Scholar 

  6. Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65:432–436

    Article  PubMed  CAS  Google Scholar 

  7. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  PubMed  CAS  Google Scholar 

  8. Feuchtinger T, Opherk K, Bethge WA, Topp MS, Schuster FR, Weissinger EM, Mohty M, Or R, Maschan M, Schumm M, Hamprecht K, Handgretinger R, Lang P, Einsele H (2010) Adoptive transfer of pp 65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood 116:4360–4367

    Article  PubMed  CAS  Google Scholar 

  9. Schmitt A, Tonn T, Busch DH, Grigoleit GU, Einsele H, Odendahl M, Germeroth L, Ringhoffer M, Ringhoffer S, Wiesneth M, Greiner J, Michel D, Mertens T, Rojewski M, Marx M, von Harsdorf S, Döhner H, Seifried E, Bunjes D, Schmitt M (2011) Adoptive transfer and selective reconstitution of streptamer-selected cytomegalovirus-specific CD8+ T cells leads to virus clearance in patients after allogeneic peripheral blood stem cell transplantation. Transfusion 51:591–599

    Article  PubMed  CAS  Google Scholar 

  10. Seo S, Boeckh M (2013) Clinical cytomegalovirus research: hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume II, chapter 16. Caister Academic Press, Norfolk (in press)

  11. Moss P, Rickinson A (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 5:9–20

    Article  PubMed  CAS  Google Scholar 

  12. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    PubMed  CAS  Google Scholar 

  13. Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–656

    Article  PubMed  CAS  Google Scholar 

  14. Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108

    PubMed  CAS  Google Scholar 

  15. Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804

    PubMed  CAS  Google Scholar 

  16. Pahl-Seibert MF, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413

    Article  PubMed  CAS  Google Scholar 

  17. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  PubMed  CAS  Google Scholar 

  18. Holtappels R, Munks MW, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology, vol 19. Caister Academic Press, Norfolk, pp 383–418

    Google Scholar 

  19. Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134

    Article  PubMed  Google Scholar 

  20. Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmuntherapy of CMV disease after hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume II, chapter 17. Caister Academic Press, Norfolk (in press)

  21. Davison AJ, Holton M, Dolan A, Dargan DJ, Gatherer D, Hayward GS (2013) Comparative genomics of primate cytomegaloviruses. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume I, chapter 1. Caister Academic Press, Norfolk (in press)

  22. Redwood AJ, Shellam GR, Smith LM (2013) Molecular evolution of murine cytomegalovirus genomes. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume I, chapter 2. Caister Academic Press, Norfolk (in press)

  23. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  PubMed  CAS  Google Scholar 

  24. Wills MR, Mason GM, Sissons JGP (2013) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume II, chapter 7. Caister Academic Press, Norfolk (in press)

  25. Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766

    PubMed  CAS  Google Scholar 

  26. Yewdell JW, Del Val M (2004) Immunodominance in TCD8+ to viruses: cell biology, cellular immunology, and mathematical models. Immunity 21:149–153

    Article  PubMed  CAS  Google Scholar 

  27. Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp 89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503

    Article  PubMed  CAS  Google Scholar 

  28. Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164

    Article  PubMed  CAS  Google Scholar 

  29. Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458

    PubMed  CAS  Google Scholar 

  30. Klenerman P, Dunbar PR (2008) CMV and the art of memory maintenance. Immunity 29:520–522

    Article  PubMed  CAS  Google Scholar 

  31. Seckert CK, Grießl M, Büttner JK, Freitag K, Lemmermann NA, Hummel MA, Liu XF, Abecassis MI, Angulo A, Messerle M, Cook CH, Reddehase MJ (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to “memory inflation”. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume I, chapter 22. Caister Academic Press, Norfolk (in press)

  32. Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796

    Article  PubMed  CAS  Google Scholar 

  33. Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456

    Article  PubMed  CAS  Google Scholar 

  34. Lemmermann NA, Kropp KA, Seckert CK, Grzimek NK, Reddehase MJ (2011) Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2011:812742

    Article  PubMed  Google Scholar 

  35. Tischer BK, von Einem J, Kaufer B, Osterrieder N (2006) Two-steo Red-mediated recombination for versatile high-efficiency markerless DANN manipulation in Escherichia coli. Biotechniques 40:191–197

    Article  PubMed  CAS  Google Scholar 

  36. Rawlinson WD, Farrell HE, Barrell BG (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849

    PubMed  CAS  Google Scholar 

  37. Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology: immunology of infection. Academic Press, London, pp 369–420

    Chapter  Google Scholar 

  38. Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 94:14759–14763

    Article  PubMed  CAS  Google Scholar 

  39. Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060

    PubMed  CAS  Google Scholar 

  40. Böhm V, Simon CO, Podlech J, Seckert CK, Gendig D, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650

    Article  PubMed  Google Scholar 

  41. Grzimek NK, Podlech J, Steffens HP, Holtappels R, Schmalz S, Reddehase MJ (1999) In vivo replication of recombinant murine cytomegalovirus driven by the paralogous major immediate-early promoter-enhancer of human cytomegalovirus. J Virol 73:5043–5055

    PubMed  CAS  Google Scholar 

  42. Podlech J, Holtappels R, Grzimek NKA, Reddehase MJ (2002) Animal models: murine cytomegalovirus. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology 32. Immunology of infection. Academic Press, San Diego, pp 493–525

    Chapter  Google Scholar 

  43. Cannon MJ, Grosse SD, Fowler KB (2013) The epidemiology and public health impact of congenital cytomegalovirus infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume II, chapter 2. Caister Academic Press, Norfolk (in press)

  44. Adler SP, Nigro G (2013) Clinical cytomegalovirus research: congenital infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, volume II, chapter 3. Caister Academic Press, Norfolk (in press)

  45. Rammensee HG, Bachmann J, Stevanovic S (1997) MHC ligands and peptide motifs. Molecular Biology Intelligence Unit, Landes Bioscience, Austin, Texas

    Google Scholar 

  46. Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653

    Article  PubMed  CAS  Google Scholar 

  47. Reddehase MJ, Koszinowski UH (1991) Redistribution of critical major histocompatibility complex and T cell receptor-binding functions of residues in an antigenic sequence after biterminal substitution. Eur J Immunol 21:1697–1701

    Article  PubMed  CAS  Google Scholar 

  48. Rognan D, Reddehase MJ, Koszinowski UH, Folkers G (1992) Molecular modeling of an antigenic complex between a viral peptide and a class I major histocompatibility glycoprotein. Proteins 13:70–85

    Article  PubMed  CAS  Google Scholar 

  49. Kloetzel PM (2001) Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2:179–187

    Article  PubMed  CAS  Google Scholar 

  50. Knuehl C, Spee P, Ruppert T, Kuckelkorn U, Henklein P, Neefjes J, Kloetzel PM (2001) The murine cytomegalovirus pp89 immunodominant H-2Ld epitope is generated and translocated into the endoplasmic reticulum as an 11-mer precursor peptide. J Immunol 167:1515–1521

    PubMed  CAS  Google Scholar 

  51. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM, Kloetzel PM, Rammensee HG, Schild H, Holzhütter HG (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62:1025–1037

    Article  PubMed  CAS  Google Scholar 

  52. Heath WR, Carbone FR (2001) Cross-presentation in viral immunity and self-tolerance. Nat Rev Immunol 1:126–134

    Article  PubMed  CAS  Google Scholar 

  53. Snyder CM, Allan JE, Bonnett EL, Doom CM, Hill AB (2010) Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8+ T cells. PLoS ONE 5:e9681

    Article  PubMed  Google Scholar 

  54. Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41:2612–2618

    Article  PubMed  CAS  Google Scholar 

  55. Morello CS, Kelley LA, Munks MW, Hill AB, Spector DH (2007) DNA immunization using highly conserved murine cytomegalovirus genes encoding homologs of human cytomegalovirus UL54 (DNA polymerase) and UL105 (helicase) elicits strong CD8 T-cell responses and is protective against systemic challenge. J Virol 81:7766–7775

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 490, and represents a cooperation between individual projects E3 ‘Persistence of murine cytomegalovirus after modulation of the CD8 T cell immunome’ (S.E., D.T., and R.H.) and E2 ‘Immunological control of latent cytomegalovirus infection’ (N.A.W.L., A.R., and M.J.R.). N.A.W.L. and M.J.R. were also supported by the Deutsche Forschungsgemeinschaft, Clinical Research Group KFO 183, individual project TP8 ‘Establishment of challenge models for optimizing the immunotherapy of cytomegalovirus disease,’ and N.A.W.L. received intramural funding in the young investigator program MAIFOR of the University Medical Center of the Johannes Gutenberg-University, Mainz.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias J. Reddehase or Rafaela Holtappels.

Additional information

Stefan Ebert and Niels A. W. Lemmermann contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebert, S., Lemmermann, N.A.W., Thomas, D. et al. Immune control in the absence of immunodominant epitopes: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201, 541–550 (2012). https://doi.org/10.1007/s00430-012-0268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-012-0268-8

Keywords

Navigation