Skip to main content

Advertisement

Log in

CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model

  • Review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Adoptive transfer of antiviral effector or memory CD8 T cells is a therapeutic option for preventing acute cytomegalovirus (CMV) disease after primary or recurrent infection in immunocompromised recipients of hematopoietic stem cell transplantation (HSCT) aimed at curing hematopoietic malignancies. Preclinical research in murine models has demonstrated the power of CD8 T-cell-based preemptive immunotherapy and has encouraged clinical trials that gave promising results. The clinical evidence, however, is based primarily on statistical analyses indicating a reduced incidence of CMV-associated complications. Here, we will briefly review the data obtained from the murine model showing that CD8 T cells derived from CMV-immune donors and administered either as peptide-selected cytolytic T lymphocyte lines or after ex vivo purification by T-cell-receptor-specific cell sorting can indeed prevent CMV-mediated histopathology and multiple organ failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Appelbaum FR (2001) Haematopoietic cell transplantation as immunotherapy. Nature 411:385–389

    Article  CAS  PubMed  Google Scholar 

  2. Hebart H, Einsele H (2004) Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol 65:432–436

    Article  CAS  PubMed  Google Scholar 

  3. Riddell SR (1995) Pathogenesis of cytomegalovirus pneumonia in immunocompromised hosts. Semin Respir Infect 10:199–208

    CAS  PubMed  Google Scholar 

  4. Wills MR, Carmichael AJ, Patrick Sissons JG (2006) Adaptive cellular immunity to human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 341–365

    Google Scholar 

  5. Riddell SR, Greenberg PD (1995) Principles for adoptive T cell therapy of human viral diseases. Annu Rev Immunol 13:545–586

    Article  CAS  PubMed  Google Scholar 

  6. Moss P, Rickinson A (2005) Cellular immunotherapy for viral infection after HSC transplantation. Nat Rev Immunol 5:9–20

    Article  CAS  PubMed  Google Scholar 

  7. Pepperl-Klindworth S, Plachter B (2006) Current perspectives in vaccine development. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 551–572

    Google Scholar 

  8. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reddehase MJ, Mutter W, Koszinowski UH (1987) In vivo application of recombinant interleukin 2 in the immunotherapy of established cytomegalovirus infection. J Exp Med 165:650–656

    Article  CAS  PubMed  Google Scholar 

  10. Reddehase MJ, Mutter W, Münch K, Bühring HJ, Koszinowski UH (1987) CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. J Virol 61:3102–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddehase MJ, Jonjic S, Weiland F, Mutter W, Koszinowski UH (1988) Adoptive immunotherapy of murine cytomegalovirus adrenalitis in the immunocompromised host: CD4-helper-independent antiviral function of CD8-positive memory T lymphocytes derived from latently infected donors. J Virol 62:1061–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greenberg PD, Reusser P, Goodrich JM, Riddell SR (1991) Development of a treatment regimen for human cytomegalovirus (CMV) infection in bone marrow transplantation recipients by adoptive transfer of donor-derived CMV-specific T cell clones expanded in vitro. Ann NY Acad Sci 636:184–195

    Article  CAS  PubMed  Google Scholar 

  13. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241

    Article  CAS  PubMed  Google Scholar 

  14. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR (1996) Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 333:1038–1044

    Article  Google Scholar 

  15. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S (2003) Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 362:1275–1277

    Article  Google Scholar 

  16. Einsele H, Hamprecht K (2003) Immunotherapy of cytomegalovirus infection after stem-cell transplantation: a new option? Lancet 362:1343–1344

    Article  PubMed  Google Scholar 

  17. Pahl-Seibert M-F, Jülch M, Podlech J, Thomas D, Deegen P, Reddehase MJ, Holtappels R (2005) Highly protective in vivo function of cytomegalovirus IE1 epitope-specific memory CD8 T cells purified by T-cell receptor-based cell sorting. J Virol 79:5400–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald C, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, Olavarria E, Goldman J, Chakraverty R, Mahendra P, Craddock C, Moss PA (2005) Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 202:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sacher T, Podlech J, Mohr AC, Jordan S, Ruzsics Z, Reddehase MJ, Koszinowski UH (2008) Cell type specific labelling of a herpesvirus: the major virus producing cell type does not contribute to virus dissemination. Cell Host Microbe (in press)

  20. Holtappels R, Munks WM, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 383–418

    Google Scholar 

  21. Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. In: Shenk TE, Stinski MF (eds) Human Cytomegalovirus. Current Topics in Microbiology and Immunology 325. Springer, Berlin , pp 315–332

    Google Scholar 

  22. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  CAS  PubMed  Google Scholar 

  23. Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371

    Article  CAS  PubMed  Google Scholar 

  24. Reddehase MJ, Bühring HJ, Koszinowski UH (1986) Cloned long-term cytolytic T-lymphocyte line with specificity for an immediate-early membrane antigen of murine cytomegalovirus. J Virol 57:408–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borysiewicz LK, Hickling JK, Graham S, Sinclair J, Cranage MP, Smith GL, Sissons JG (1988) Human cytomegalovirus-specific cytotoxic T cells. Relative frequency of stage-specific CTL recognizing the 72-kD immediate early protein and glycoprotein B expressed by recombinant vaccinia viruses. J Exp Med 168:919–931

    Article  CAS  PubMed  Google Scholar 

  26. Kern F, Surel IP, Faulhaber N, Frömmel C, Schneider-Mergener J, Schönemann C, Reinke P, Volk HD (1999) Target structures of the CD8(+)-T-cell response to human cytomegalovirus: the 72-kilodalton immediate-early protein revisited. J Virol 73:8179–8184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson L, Piccini G, Lilleri D, Revello MG, Wang Z, Markel S, Diamond DJ, Luzuriaga K (2004) Human cytomegalovirus proteins pp65 and immediate early protein 1 are common targets for CD8+ T cell responses in children with congenital or postnatal human cytomegalovirus infection. J Immunol 172:2256–2264

    Article  CAS  PubMed  Google Scholar 

  28. Bunde T, Kirchner A, Hoffmeister B, Habedank D, Hetzer R, Cherepnev G, Proesch S, Reinke P, Volk HD, Lehmkuhl H, Kern F (2005) Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J Exp Med 201:1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202:673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Starr SE, Allison AC (1977) Role of T lymphocytes in recovery from cytomegalovirus infection. Infect Immun 17:458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ho M (1980) Role of specific cytotoxic T lymphocytes in cellular immunity against murine cytomegalovirus. Infect Immun 27:767–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holtappels R, Podlech J, Geginat G, Steffens HP, Thomas D, Reddehase MJ (1998) Control of murine cytomegalovirus in the lungs: relative but not absolute immunodominance of the immediate-early 1 nonapeptide during the antiviral cytolytic T-lymphocyte response in pulmonary infiltrates. J Virol 72:7201–7212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104

    Article  CAS  PubMed  Google Scholar 

  34. Podlech J, Holtappels R, Pahl-Seibert M-F, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alterio de Goss M, Holtappels R, Steffens HP, Podlech J, Angele P, Dreher L, Thomas D, Reddehase MJ (1998) Control of cytomegalovirus in bone marrow transplantation chimeras lacking the prevailing antigen-presenting molecule in recipient tissues rests primarily on recipient-derived CD8 T cells. J Virol 72:7733–7744

    Article  Google Scholar 

  36. Steffens HP, Kurz S, Holtappels R, Reddehase MJ (1998) Preemptive CD8 T-cell immunotherapy of acute cytomegalovirus infection prevents lethal disease, limits the burden of latent viral genomes, and reduces the risk of virus recurrence. J Virol 72:1797–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Holtappels R, Pahl-Seibert M-F, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1(m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morello CS, Ye M, Spector DH (2002) Development of a vaccine against murine cytomegalovirus (MCMV), consisting of a plasmid DNA and formalin-inactivated MCMV, that provides long-term, complete protection against viral replication. J Virol 76:4822–4835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morello CS, Cranmer LD, Spector DH (2000) Suppression of murine cytomegalovirus (MCMV) replication with a DNA vaccine encoding MCMV M84 (a homolog of human cytomegalovirus pp65). J Virol 74:3696–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holtappels R, Podlech J, Grzimek NK, Thomas D, Pahl-Seibert M-F, Reddehase MJ (2001) Experimental preemptive immunotherapy of murine cytomegalovirus disease with CD8 T-cell lines specific for ppM83 and ppM84, the two homologs of human cytomegalovirus tegument protein ppUL83 (pp65). J Virol 75:6584–6600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ye M, Morello CS, Spector DH (2002) Strong CD8 T-cell responses following coimmunization with plasmids expressing the dominant pp89 and subdominant M84 antigens of murine cytomegalovirus correlate with long-term protection against subsequent viral challenge. J Virol 76:2100–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ye M, Morello CS, Spector DH (2004) Multiple epitopes in the murine cytomegalovirus early gene product M84 are efficiently presented in infected primary macrophages and contribute to strong CD8+-T-lymphocyte responses and protection following DNA immunization. J Virol 78:11233–11245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morello CS, Kelley LA, Munks MW, Hill AB, Spector DH (2007) DNA immunization using highly conserved murine cytomegalovirus genes encoding homologs of human cytomegalovirus UL54 (DNA polymerase) and UL105 (helicase) elicits strong CD8 T-cell responses and is protective against systemic challenge. J Virol 81:7766–7775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gonzales Armas JC, Morello CS, Cranmer LD, Spector DH (1996) DNA immunization confers protection against murine cytomegalovirus infection. J Virol 70:7921–7928

    Article  Google Scholar 

  47. Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holtappels R, Janda J, Thomas D, Schenk S, Reddehase MJ, Geginat G (2008) Adoptive CD8 T cell control of pathogens cannot be improved by combining protective epitope specificities. J Infect Dis 197:622–629

    Article  PubMed  Google Scholar 

  49. Hanson LK, Campbell AE (2006) Determinants of macrophage tropism. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 341–365

    Google Scholar 

  50. Mocarski Jr ES, Hahn G, Lofgren White K, Xu J, Slobedman B, Hertel L, Aguirre SA, Noda S (2006) Myeloid cell recruitment and function in pathogenesis and latency. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, pp 465–481

    Google Scholar 

  51. Ménard C, Wagner M, Ruzsics Z, Holak K, Brune W, Campbell AE, Koszinowski UH (2003) Role of murine cytomegalovirus US22 gene family members in replication in macrophages. J Virol 77:5557–5570

    Article  PubMed  PubMed Central  Google Scholar 

  52. Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cicin-Sain L, Ruzsics Z, Podlech J, Bubic I, Ménard C, Jonjic S, Reddehase MJ, Koszinowski UH (2008) Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an anti-apoptotic viral gene. J Virol 82:2056–2064

    Article  CAS  PubMed  Google Scholar 

  54. Erlach KC, Böhm V, Seckert CK, Reddehase MJ, Podlech J (2006) Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J Virol 80:4801–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jonjic S, Pavic I, Lucin P, Rukavina D, Koszinowski UH (1990) Efficacious control of cytomegalovirus infection after long-term depletion of CD8+ T lymphocytes. J Virol 64:5457–5464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Polic B, Jonjic S, Pavic I, Crnkovic I, Zorica I, Hengel H, Lucin P, Koszinowski UH (1996) Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo. J Gen Virol 77:217–225

    Article  CAS  PubMed  Google Scholar 

  57. Humphreys IR, Loewendorf A, de Trez C, Schneider K, Benedict CA, Munks MW, Ware CF, Croft M (2007) OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: a CD4-dependent mechanism. J Immunol 179:2195–2202

    Article  CAS  PubMed  Google Scholar 

  58. Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766

    Article  CAS  PubMed  Google Scholar 

  59. Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365

    Article  CAS  PubMed  Google Scholar 

  60. Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241

    Article  CAS  PubMed  Google Scholar 

  61. Holtappels R, Podlech J, Pahl-Seibert M-F, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234

    Article  CAS  PubMed  Google Scholar 

  64. Hengel H, Jonjic S, Ruppert T, Koszinowski UH (1994) Restoration of cytomegalovirus antigen presentation by gamma interferon combats viral escape. J Virol 68:289–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 490, individual projects E3 (R.H.) and E4 (M.J.R. and V.B.), SFB 432, individual project A10 (J.P.) and Clinical Research Group KFO 183 (M.J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaela Holtappels.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtappels, R., Böhm, V., Podlech, J. et al. CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197, 125–134 (2008). https://doi.org/10.1007/s00430-008-0093-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-008-0093-2

Keywords

Navigation