Skip to main content
Log in

Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting

  • Research
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization. All such events were found in water frogs from the genus Pelophylax. Among the species within the genus Pelophylax, P. esculentus complex is the most widely distributed and well-studied. This complex includes two parental species, P. ridibundus and P. lessonae, and their hybrids, P. esculentus, reproducing hemiclonally. Parental species and their hybrids have similar but slightly polymorphic karyotypes, so their precise identification is still required. Here, we have developed a complete set of 13 chromosome painting probes for two parental species allowing the precise identification of all chromosomes. Applying chromosomal painting, we identified homologous chromosomes in both parental species and orthologous chromosomes in their diploid hemiclonal hybrids. Comparative painting did not reveal interchromosomal exchanges between the studied water frog species and their hybrids. Using cross-specific chromosome painting, we detected unequal distribution of the signals along chromosomes suggesting the presence of species-specific tandem repeats. Application of chromosomal paints to the karyotypes of hybrids revealed differences in the intensity of staining for P. ridibundus and P. lessonae chromosomes. Thus, both parental genomes have a divergence in unique sequences. Obtained chromosome probes may serve as a powerful tool to unravel chromosomal evolution in phylogenetically related species, identify individual chromosomes in different cell types, and investigate the elimination of chromosomes in hybrid water frogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data presented here are included in the article and its Supplementary Information.

References

  • Akın Ç, Can Bilgin C, Beerli P, Westaway R, Ohst T, Litvinchuk SN, Uzzell T, Bilgin M, Hotz H, Guex G-D, Plötner J (2010) Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. J Biogeogr 37:2111–2124

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert PS, Zhang T, Semrau K, Rouillard J-M, Kao Y-H, Wang C-JR, Danilova TV, Jiang J, Birchler JA (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci 116:1679–1685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alexander AM, Su Y-C, Oliveros CH, Olson KV, Travers SL, Brown RM (2017) Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow-mouth frogs. Evolution 71:475–488

    Article  PubMed  Google Scholar 

  • Alix K, Gérard PR, Schwarzacher T, (Pat) Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Arioli M (2007) Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta (PhD Thesis). University of Zurich

  • Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger L (1968) Morphology of the F1 generation of various crosses within Rana esculenta-complex. Acta Zool Cracoviensia 13:301–324

    Google Scholar 

  • Bucci S, Ragghianti M, Mancino G, Berger L, Hotz H, Uzzell T (1990) Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool 255:37–56

    Article  PubMed  CAS  Google Scholar 

  • Bullini L (1985) Speciation by hybridization in animals. Boll Zool 52:121–137

    Article  Google Scholar 

  • Chmielewska M, Dedukh D, Haczkiewicz K, Rozenblut-Kościsty B, Kaźmierczak M, Kolenda K, Serwa E, Pietras-Lebioda A, Krasikova A, Ogielska M (2018) The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci Rep 8:7870

    Article  PubMed  PubMed Central  Google Scholar 

  • Chmielewska M, Kaźmierczak M, Rozenblut-Kościsty B, Kolenda K, Dudzik A, Dedukh D, Ogielska M (2022) Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front Cell Dev Biol 10:1008506

    Article  PubMed  PubMed Central  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

    Article  PubMed  CAS  Google Scholar 

  • Dawley RM, Bogart JP (1989) Evolution and ecology of unisexual vertebrates. New York State Museum, Albany, NY

  • De Lucca EJ, Jim J, Foresti F (1974) Chromosomal studies in twelve species of Leptodactylidae and one Brachycephalidae. Caryologia 27:183–192

    Article  Google Scholar 

  • Dedukh D, Mazepa G, Shabanov D, Rosanov J, Litvinchuk S, Borkin L, Saifitdinova A, Krasikova A (2013) Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genet 14:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedukh D, Litvinchuk S, Rosanov J, Mazepa G, Saifitdinova A, Shabanov D, Krasikova A (2015) Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE 10:e0123304

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedukh D, Litvinchuk J, Svinin A, Litvinchuk S, Rosanov J, Krasikova A (2019) Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS ONE 14:e0224759

    Article  PubMed  CAS  Google Scholar 

  • Dedukh D, Riumin S, Chmielewska M, Rozenblut-Kościsty B, Kolenda K, Kaźmierczak M, Dudzik A, Ogielska M, Krasikova A (2020) Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep 10:8720

    Article  PubMed Central  CAS  Google Scholar 

  • Denaro L (1972) Karyotypes of Leptodactylidae Anurans. J Herpetol 6:71–74

    Article  Google Scholar 

  • Derjusheva S, Kurganova A, Krasikova A, Saifitdinova A, Habermann FA, Gaginskaya E (2003) Precise identification of chicken chromosomes in the lampbrush form using chromosome painting probes. Chromosome Res 11:749–757

    Article  PubMed  CAS  Google Scholar 

  • Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L (2016) Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet 17:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Doležálková-Kaštánková M, Pruvost NBM, Plötner J, Reyer H-U, Janko K, Choleva L (2018) All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol Sex Differ 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufresnes C, Denoël M, di Santo L, Dubey S (2017) Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci Rep 7:6506

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufresnes C, Litvinchuk SN, Rozenblut-Kościsty B, Rodrigues N, Perrin N, Crochet P, Jeffries DL (2020) Hybridization and introgression between toads with different sex chromosome systems. Evol Lett 4:444–456

    Article  PubMed Central  Google Scholar 

  • Ebendal T (1977) Karyotype and serum protein pattern in a Swedish population of Rana lessonae (Amphibia, Anura). Hereditas 85:75–80

    Article  Google Scholar 

  • Kalaycı TE, Kalaycı G, Özdemir N (2017) Phylogeny and systematics of Anatolian mountain frogs. Biochem Syst Ecol 73:26–34

    Article  Google Scholar 

  • Fontdevila A (2019) Hybrid genome evolution by transposition: an update. J Hered 110:124–136

    Article  CAS  Google Scholar 

  • Frost DR (2020) Amphibian species of the world: an online reference. Version 6.0 Electronic Database. Am Mus Nat Hist NY

  • Fry K, Salser W (1977) Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Giménez MD, Panithanarak T, Hauffe HC, Searle JB (2016) Empirical demonstration of hybrid chromosomal races in house mice. Evol Int J Org Evol 70:1651–1658

    Article  Google Scholar 

  • Gokhman VE, Cioffi M, de König B, Pollmann C, Gantert M, Krogmann C, Steidle L, Kosyakova N, Steidle JLM, Liehr T, Al-Rikabi A (2019) Microdissection and whole chromosome painting confirm karyotype transformation in cryptic species of the Lariophagus distinguendus (Förster, 1841) complex (Hymenoptera: Pteromalidae). PLOS ONE 14:e0225257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf J-D, Polls-Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex., in: Dawley RM, Bogart JP (Eds.), Evolution and ecology of unisexual vertebrates. 289–302

  • Graphodatsky AS, Trifonov VA, Stanyon R (2011) The genome diversity and karyotype evolution of mammals. Mol Cytogenet 4:22

    Article  PubMed  Google Scholar 

  • Green D, Sessions SK (1991) Amphibian cytogenetics and evolution -, 1st edn. Academic Press Inc, Harcourt Brace Jovanovich, Boston

    Google Scholar 

  • Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289

    Article  Google Scholar 

  • Heppich S (1978) Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. J Zool Syst Evol Res 16:27–39

    Article  Google Scholar 

  • Heppich S, Tunner HG, Greilhuber J (1982) Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor Appl Genet 61:101–104

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka A, Kawahara A (2004) Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats. J Mol Evol 59:738–746

    Article  PubMed  CAS  Google Scholar 

  • Ivanov VG, Madianov NN (1973) Comparative karyology of frogs of the genus Rana. Tsitologiia 15:920–928

    PubMed  CAS  Google Scholar 

  • Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci 89:8611–8615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kierzkowski P, Paśko Ł, Rybacki M, Socha M, Ogielska M (2011) Genome dosage effect and hybrid morphology—the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann Zool Fenn 48:56–66

    Article  Google Scholar 

  • Knudsen K, Scheel JJ (1975) Contribution to systematics of European green frogs, in: Bulletin de la societe zoologique de France-evolution et zoologie. Soc Zoologique France Inst Oceanographique 195 Rue Saint-Jacques, 677–679

  • Koref-Santibañez S (1979) The karyotypes of Rana lessonae Camerano, Rana ridibunda Pallas and the hybrid form Ranaesculenta” Linne (Anura). Mitt Zool Mus Berl 55:115–124

    Google Scholar 

  • Koref-Santibanez S, Günther R (1980) Karyological and serological studies in Rana lessonae, R. ridibunda and in their hybrid R. ‘esculenta’(Amphibia, Anura). Genetica 52:195–207

    Article  Google Scholar 

  • Kosyakova N, Liehr T, Al-Rikabi ABH (2017) FISH-microdissection. In: Liehr T (ed) fluorescence in situ hybridization (FISH): application guide, Springer Protocols Handbooks. Springer, Berlin, Heidelberg, pp 81–100

    Chapter  Google Scholar 

  • Kretschmer R, Ferguson-Smith MA, De Oliveira EHC (2018) Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Krylov V, Tlapakova T (2015) Xenopus cytogenetics and chromosomal evolution. Cytogenet Genome Res 145:192–200

    Article  PubMed  Google Scholar 

  • Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E, Sebkova N (2010) Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosome Res 18:431–439

    Article  CAS  Google Scholar 

  • Lamb JC, Yu W, Han F, Birchler JA (2007) Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. Curr Opin Plant Biol 10:116–122

    Article  PubMed  CAS  Google Scholar 

  • Leducq J-B, Nielly-Thibault L, Charron G, Eberlein C, Verta J-P, Samani P, Sylvester K, Hittinger CT, Bell G, Landry CR (2016) Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol 1:1–10

    Article  Google Scholar 

  • Litvinchuk S, Borkin L, Skorinov D, Pasynkova R, Rosanov Y (2016) Natural polyploidy in amphibians. Biol Commun 3:77–86

    Google Scholar 

  • Lukhtanov VA, Shapoval NA, Anokhin BA, Saifitdinova AF, Kuznetsova VG (2015) Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc r Soc B Biol Sci 282:20150157

    Article  Google Scholar 

  • Lukhtanov VA, Dincă V, Friberg M, Vila R, Wiklund C (2020) Incomplete sterility of chromosomal hybrids: implications for karyotype evolution and homoploid hybrid speciation. Front Genet 11

  • Lymberakis P, Poulakakis N, Manthalou G, Tsigenopoulos CS, Magoulas A, Mylonas M (2007) Mitochondrial phylogeography of Rana (Pelophylax) populations in the Eastern Mediterranean region. Mol Phylogenet Evol 44:115–125

    Article  PubMed  CAS  Google Scholar 

  • Macgregor HC, Sessions SK, Arntzen JW (1990) An integrative analysis of phylogenetic relationships among newts of the genus Triturus (family Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J Evol Biol 3:329–373

    Article  Google Scholar 

  • Manaresi S, Marescalchi O, Scali V (1992) The chromosome complement of the hybrid Bacillus whitei complex (Insecta Phasmatodea) I. The Paleo-and Neo-Standard Karyotypes Cytologia (tokyo) 57:101–109

    Article  Google Scholar 

  • Marracci S, Michelotti V, Guex G-D, Hotz H, Uzzell T, Ragghianti M (2011) RrS1-like sequences of water frogs from Central Europe and around the Aegean Sea: chromosomal organization, evolution, possible function. J Mol Evol 72:368–382

    Article  PubMed  CAS  Google Scholar 

  • Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K (2020) Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes 11:617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. Fish Cytogenet 421:452

    Google Scholar 

  • Martirosyan A, Stepanyan I (2009) Features of the karyotypes of Pelophylax ridibundus Pallas, 1771 and Rana macrocnemis Boulenger, 1885 (Amphibia: Ranidae) from Armenia. Comp Cytogenet 3:11–24

    Article  Google Scholar 

  • Mikulíček P, Kautman M, Demovič B, Janko K (2014) When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J Evol Biol 27:628–642

    Article  PubMed  Google Scholar 

  • Miura I, Ohtani H, Hanada H, Ichikawa Y, Kashiwagi A, Nakamura M (1997) Evidence for two successive pericentric inversions in sex lampbrush chromosomes of Rana rugosa (Anura: Ranidae). Chromosoma 106:178–182

    Article  PubMed  CAS  Google Scholar 

  • Morescalchi A (1980) Evolution and karyology of the amphibians. Boll Zool 47:113–126

    Article  Google Scholar 

  • Ogielska M (1994) Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles-a putative way of chromosome elimination. Zool Pol 39

  • Ogielska M, Kierzkowski P, Rybacki M (2004) DNA content and genome composition of diploid and triploid water frogs belonging to the Rana esculenta complex (Amphibia, Anura). Can J Zool 82(12):1894–1901

    Article  CAS  Google Scholar 

  • Perkins RD, Gamboa JR, Jonika MM, Lo J, Shum A, Adams RH, Blackmon H (2019) A database of amphibian karyotypes. Chromosome Res 27:313–319

    Article  PubMed  CAS  Google Scholar 

  • Picariello O, Odierna G, Petraccioli A, Amor N, Feliciello I, Chinali G (2012) Characterization of two major satellite DNAs specific to the genus Discoglossus (Amphibia, Anura). Ital J Zool 79:385–394

    Article  CAS  Google Scholar 

  • Plötner J (2005) Die westpaläarktischen Wasserfrösche. Von Märtyrern der Wissenschaft zur biologischen Sensation. Laurenti, Bielefeld: Zeitschrift für Feldherpetologie, Beiheft 9

  • Plötner J, Uzzell T, Beerli P, Spolsky C, Ohst T, Litvinchuk SN, Guex G-D, Reyer H-U, Hotz H (2008) Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol 21:668–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Ragghianti M, Guerrini F, Bucci S, Mancino G, Hotz H, Uzzell T, Guex G-D (1995) Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res 3:497–506

    Article  PubMed  CAS  Google Scholar 

  • Ried T, Schröck E, Ning Y, Wienberg J (1998) Chromosome painting: a useful art. Hum Mol Genet 7:1619–1626

    Article  CAS  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Romanenko SA, Biltueva LS, Serdyukova NA, Kulemzina AI, Beklemisheva VR, Gladkikh OL, Lemskaya NA, Interesova EA, Korentovich MA, Vorobieva NV et al (2015) Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol Cytogenet 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Herrera A, Farré M, Robinson TJ (2012) Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity 108:28–36

    Article  PubMed  CAS  Google Scholar 

  • Schmeller DS (2004) Tying ecology and genetics of hemiclonally reproducing waterfrogs (Rana, Anura). Ann Zool Fenn 41:681–687

    Google Scholar 

  • Schmeller DS, Seitz A, Crivelli A, Veith M (2005) Crossing species’ range borders: interspecies gene exchange mediated by hybridogenesis. Proc Biol Sci 272:1625–1631

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schmid M (1978) Chromosome banding in amphibia. Chromosoma 66:361–388

    Article  Google Scholar 

  • Schön I, Martens K, van Dijk P (eds) (2009) Lost sex: the evolutionary biology of parthenogenesis, 2009th, edition. Springer

    Google Scholar 

  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sessions SK (2008) Evolutionary cytogenetics in salamanders. Chromosome Res 16:183–201

    Article  PubMed  CAS  Google Scholar 

  • Spasic-Boskovic O, Krizmanic I, Vujosevic M (1999) Population composition and genetic variation of water frogs (Anura: Ranidae) from Yugoslavia. Caryologia 52:9–20

    Article  Google Scholar 

  • Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D, Ventura M, Cardone MF, Bigoni F, Archidiacono N (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16:17–39

    Article  CAS  Google Scholar 

  • Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K (2021) Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum. Philos Trans R Soc B Biol Sci 376:20200103

    Article  Google Scholar 

  • Svinin A, Dedukh DV, Borkin LJ, Ermakov O, Ivanov A, Litvinchuk J, Zamaletdinov R, Mikhaylova R, Trubyanov AB, Skorinov D, Rosanov Y, Litvinchuk S (2021) Genetic structure, morphological variation, and gametogenic peculiarities in water frogs (Pelophylax) from northeastern European Russia. J Zool Syst Evol Res 59:646–662

    Article  Google Scholar 

  • Telenius H, Carter NP, Bebb CE, Nordenskjo’ld M, Ponder BAJ, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  PubMed  CAS  Google Scholar 

  • Trifonov VA, Vorobieva NN, Rens W (2009) FISH with and without COT1 DNA. In: Liehr T (ed) fluorescence in situ hybridization (FISH)—application guide, Springer Protocols Handbooks. Springer, Berlin, Heidelberg, pp 99–109

    Chapter  Google Scholar 

  • Tunner HG (1973) Demonstration of the hybrid origin of the common green frog Rana esculenta L. Naturwissenschaften 60:481–482

    Article  PubMed  CAS  Google Scholar 

  • Tunner HG, Heppich S (1981) Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften 68:207–208

    Article  CAS  Google Scholar 

  • Tunner HG, Heppich S (1983) A genetic analysis of water frogs from Greece: evidence for the existence of a cryptic species. J Zool Syst Evol Res 20:209–223

    Article  Google Scholar 

  • Tunner HG, Heppich-Tunner S (1991) Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 78(1):32–34

    Article  Google Scholar 

  • Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873

    Article  PubMed  CAS  Google Scholar 

  • Vinogradov AE, Borkin LJ, Günther R, Rosanov JM (1990) Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome 33:619–627

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP (2009) Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T (ed) fluorescence in situ hybridization (FISH)—application guide, Springer Protocols Handbooks. Springer, Berlin, Heidelberg, pp 35–52

    Chapter  Google Scholar 

  • Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P (2011) Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res 134:206–212

    Article  PubMed  Google Scholar 

  • Zlotina A, Dedukh D, Krasikova A (2017) Amphibian and avian karyotype evolution: insights from lampbrush chromosome studies. Genes 8:311

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Irina Trofimova and Tatiana Kulikova for their help with chromosome microdissection as well as Anton Svinin, Marie Dolezalkova-Kastankova, and Lukas Choleva for collecting animals. The authors acknowledge resource centers “Environmental Safety Observatory” and “Molecular and Cell Technologies” (Saint-Petersburg State University) for access to experimental equipment.

Funding

DD was supported by the Russian Science Foundation grant (20–74-00030) and the Czech Science Foundation grant (23-07028 K) and RVO (67985904).

Author information

Authors and Affiliations

Authors

Contributions

AK and DD conceived the study; DD collected animal tissues and prepared chromosome preparations; AAR and NP performed chromosome microdissection; TL supervised chromosome microdissection and generation of probes; AM and DD performed cytogenetic experiments; AM, DD, and AK contributed to the interpretation of FISH experiments; DD wrote the first draft of the manuscript with further improvements by AM and AK. All authors provided critical feedback and helped to revise the manuscript.

Corresponding author

Correspondence to Alla Krasikova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Collected species are not listed by the IUCN Red List or CITES. Techniques used in the capture, breeding, tissue sampling, and euthanasia sought to minimize animal suffering and were in accordance with recommendations of the Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists. Each individual was anesthetized by submersion in a 0.5% solution of 3-aminobenzoic acid ethyl ester (MS 222). The study was conducted according to the guidelines of the Local Animal Ethics Committee of Saint-Petersburg State University (# 131–04-7 from 25.03.2019).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 15.7 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedukh, D., Maslova, A., Al-Rikabi, A. et al. Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting. Chromosoma 132, 329–342 (2023). https://doi.org/10.1007/s00412-023-00812-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-023-00812-8

Keywords

Navigation