Skip to main content

Complex FISH probes comprising large spans of genomic DNA always contain a high amount of dispersed repetitive sequences that hamper the visualization of the specific signal of interest. To overcome this problem, different approaches have been elaborated that depend on the type of experiment and the quality of the probe. A classical way to suppress repetitive sequences is to use unlabeled competitor DNA (sheared total genomic DNA or repeated sequence enriched DNA fractions). Here we present two protocols: the first one describes rapid COT DNA isolation and the peculiarities of its use in different FISH experiments, and the second is used for COT-free FISH with complex probes and is based on a special software tool for image enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Britten RJ, Graham DE, Neufeld BR (1974) Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 29:363–419

    Article  CAS  PubMed  Google Scholar 

  • Bolzer A, Craig JM, Cremer T, Speicher MR (1999) A complete set of repeat-depleted, PCR- amplifiable, human chromosome-specific painting probes. Cytogenet Cell Genet 84:233–240

    Article  CAS  PubMed  Google Scholar 

  • Craig JM, Kraus J, Cremer T (1997) Removal of repetitive sequences from FISH probes using PCR-assisted affinity chromatography. Hum Genet 100:472–476

    Article  CAS  PubMed  Google Scholar 

  • Dugan LC, Pattee MS, Williams J, Eklund M, Sorensen K, Bedford JS, Christian AT (2005) Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH. Chromosome Res 13:27–32

    Article  CAS  PubMed  Google Scholar 

  • Hopman AHM., Raap AK, Landegent JE, Wiegant J, Boerman RH (1988) Nonradioactive in situ hybridization. Molec Neuroanat 10:43–64

    Google Scholar 

  • Landegent JE, Jansen in de Wal N, Dirks RW, van der Ploeg M (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization. Human Genet 77:366–370

    Article  CAS  Google Scholar 

  • Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80:224–234

    Article  CAS  PubMed  Google Scholar 

  • Pardue ML, Gall JG (1975) Nucleic acid hybridization to the DNA of cytological preparations. Methods Cell Biol 10:1–16

    Article  CAS  PubMed  Google Scholar 

  • Rabbitts P, Impey H, Heppell-Parton A, Langford C, Tease C, Lowe N, Bailey D, Malcolm Ferguson-Smith MA, Carter N (1995) Chromosome specific paints from a high resolution flow karyotype of the mouse. Nat Genet 9:369–375

    Article  CAS  PubMed  Google Scholar 

  • Rens W, Grützner F, O'Brien PC, Fairclough H, Graves JA, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4- Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101:16257–16261

    Article  CAS  PubMed  Google Scholar 

  • Rens W, Moderegger K, Skelton H, Clarke O, Trifonov V, Ferguson-Smith MA (2006) A procedure for image enhancement in chromosome painting. Chromosome Res 14:497–503

    Article  CAS  PubMed  Google Scholar 

  • Rogan PK, Cazcarro PM, Knoll JH (2001) Sequence-based design of single-copy genomic DNA probes for fluorescence in situ hybridization. Genome Res 11:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Sealey PG, Whittaker PA, Southern EM (1985) Removal of repeated sequences from hybridisation probes. Nucleic Acids Res 13:1905–1922

    Article  CAS  PubMed  Google Scholar 

  • Telenius HC, Carter NP, Bebb CE et al. (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  CAS  PubMed  Google Scholar 

  • Wienberg J, Adamski E, Yang F, Müller S, Ferguson-Smith MA (1997) Chromosome painting without competitor DNA. Trends Genet Tech Tips Online (homepage at http://www1.elsevier.com/homepage/sab/tto/menu.htm)

  • Yang F, O'Brien P, Milne B, Graphodatsky A, Solansky N, Trifonov V, Rens W, Sargan D, Ferguson-Smith MA (1999) A complete comparative chromosome map for the dog, red fox, and and human and its integration with canine genetic maps. Genomics 62:189–202

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the RFBR, DFG research grants to VAT and NVV, and by a Welcome Trust grant to WR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir A. Trifonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Trifonov, V.A., Vorobieva, N.N., Rens, W. (2009). FISH With and Without COT1 DNA. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH) — Application Guide. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70581-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70581-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70580-2

  • Online ISBN: 978-3-540-70581-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics