Skip to main content
Log in

Primate chromosome evolution: Ancestral karyotypes, marker order and neocentromeres

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

In 1992 the Japanese macaque was the first species for which the homology of the entire karyotype was established by cross-species chromosome painting. Today, there are chromosome painting data on more than 50 species of primates. Although chromosome painting is a rapid and economical method for tracking translocations, it has limited utility for revealing intrachromosomal rearrangements. Fortunately, the use of BAC-FISH in the last few years has allowed remarkable progress in determining marker order along primate chromosomes and there are now marker order data on an array of primate species for a good number of chromosomes. These data reveal inversions, but also show that centromeres of many orthologous chromosomes are embedded in different genomic contexts. Even if the mechanisms of neocentromere formation and progression are just beginning to be understood, it is clear that these phenomena had a significant impact on shaping the primate genome and are fundamental to our understanding of genome evolution. In this report we complete and integrate the dataset of BAC-FISH marker order for human syntenies 1, 2, 4, 5, 8, 12, 17, 18, 19, 21, 22 and the X. These results allowed us to develop hypotheses about the content, marker order and centromere position in ancestral karyotypes at five major branching points on the primate evolutionary tree: ancestral primate, ancestral anthropoid, ancestral platyrrhine, ancestral catarrhine and ancestral hominoid. Current models suggest that between-species structural rearrangements are often intimately related to speciation. Comparative primate cytogenetics has become an important tool for elucidating the phylogeny and the taxonomy of primates. It has become increasingly apparent that molecular cytogenetic data in the future can be fruitfully combined with whole-genome assemblies to advance our understanding of primate genome evolution as well as the mechanisms and processes that have led to the origin of the human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apiou F, Rumpler Y, Warter S, Vezuli A, Dutrillaux B (1996) Demonstration of homoeologies between human and lemur chromosomes by chromosome painting. Cytogenet Cell Genet 72: 50.

    PubMed  CAS  Google Scholar 

  • Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7: 552.

    Article  PubMed  CAS  Google Scholar 

  • Bailey JA, Baertsch R, Kent WJ, Haussler D, Eichler EE (2004) Hotspots of mammalian chromosomal evolution. Genome Biol 5: R23.

    Article  PubMed  Google Scholar 

  • Barros RM, Nagamachi CY, Pieczarka JC et al. (2003) Chromosomal studies in Callicebus donacophilus pallescens, with classic and molecular cytogenetic approaches: multicolour FISH using human and Saguinus oedipus painting probes. Chromosome Res 11: 327.

    Article  PubMed  CAS  Google Scholar 

  • Bigoni F, Koehler U, Stanyon R, Ishida T, Wienberg J (1997a) Fluorescene in situ hybridization establishes homology between human and silvered leaf monkey chromosomes, reveals reciprocal translocations between chromosomes homologous to human Y/5, 1/9, and 6/16, and delineates an X1X2Y1Y2/X1X1X2X2 sex-chromosome system. Am J Phys Anthropol 102: 315.

    Article  PubMed  CAS  Google Scholar 

  • Bigoni F, Stanyon R, Koehler U, Morescalchi AM, Wienberg J (1997b) Mapping homology between human and black and white colobine monkey chromosomes by fluorescent in situ hybridization. Am J Primatol 42: 289.

    Article  PubMed  CAS  Google Scholar 

  • Bigoni F, Stanyon R, Wimmer R, Schempp W (2003) Chromosome painting shows that the proboscis monkey (Nasalis larvatus) has a derived karyotype and is phylogenetically nested within Asian Colobines. Am J Primatol 60: 85.

    Article  PubMed  CAS  Google Scholar 

  • Canavez FC, Moreira MA, Ladasky JJ, Pissinatti A, Parham P, Seuanez HN (1999) Molecular phylogeny of new world primates (Platyrrhini) based on beta2-microglobulin DNA sequences. Mol Phylogenet Evol 12: 74.

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Ventura M, Tempesta S, Rocchi M, Archidiacono N (2002) Evolutionary history of chromosome 10 in primates. Chromosoma 111: 267.

    Article  PubMed  CAS  Google Scholar 

  • Cardone MF, Ventura M, Tempesta S, Rocchi M, Archidiacono N (2002) Analysis of chromosome conservation in Lemur catta studied by chromosome paints and BAC/PAC probes. Chromosoma 111: 348.

    Article  PubMed  CAS  Google Scholar 

  • Cardone MF, Alonso A, Pazienza M et al. (2006) Independent centromere formation in a capricious, gene-free domain of chromosome 13q21 in Old World monkeys and pigs. Genome Biol 7: R91.

    Article  PubMed  CAS  Google Scholar 

  • Cardone MF, Lomiento M, Teti MG et al. (2007) Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini. Genomics 90: 35.

    Google Scholar 

  • Carter NP (1994) Cytogenetic analysis by chromosome painting. Cytometry 18: 2.

    Article  PubMed  CAS  Google Scholar 

  • Clemente IC, Ponsa M, Garcia M, Egozcue J (1990) Evolution of the Simiiformes and the phylogeny of human chromosomes. Hum Genet 84: 493.

    Article  PubMed  CAS  Google Scholar 

  • Consigliere S, Stanyon R, Koehler U, Agoramoorthy G, Wienberg J (1996) Chromosome painting defines genomic rearrangements between red howler monkey subspecies. Chromosome Res 4: 264.

    Article  PubMed  CAS  Google Scholar 

  • Consigliere S, Stanyon R, Koehler U, Arnold N, Wienberg J (1998) In situ hybridization (FISH) maps chromosomal homologies between Alouatta belzebul (Platyrrhini, Cebidae) and other primates and reveals extensive interchromosomal rearrangements between howler monkey genomes. Am J Primatol 46: 119.

    Article  PubMed  CAS  Google Scholar 

  • de Grouchy J (1987) Chromosome phylogenies of man, great apes, and Old World monkeys. Genetica 73: 37.

    PubMed  Google Scholar 

  • de Grouchy J, Turleau C, Finaz C (1978) Chromosomal phylogeny of the primates. Annu Rev Genet 12: 289.

    Article  PubMed  Google Scholar 

  • de Oliveira EH, Neusser M, Figueiredo WB et al. (2002) The phylogeny of howler monkeys (Alouatta, Platyrrhini): reconstruction by multicolor cross-species chromosome painting. Chromosome Res 10: 669.

    Article  PubMed  Google Scholar 

  • de Oliveira EH, Neusser M, Pieczarka JC, Nagamachi C, Sbalqueiro IJ, Muller S (2005) Phylogenetic inferences of Atelinae (Platyrrhini) based on multi-directional chromosome painting in Brachyteles arachnoides, Ateles paniscus paniscus and Ateles b. marginatus. Cytogenet Genome Res 108: 183.

    Article  PubMed  Google Scholar 

  • Disotell T, Raaum RL (2002) Molecular timescale and gene tree incongruence in the guenons. In: Glenn ME and Cords M, eds. The Guenons: Diversity and Adaptation in African Monkeys. Kluwer Academic Publishers, New York, pp. 27–36.

  • Dumas F, Bigoni F, Stone G, Sineo L, Stanyon R (2005) Mapping genomic rearrangements in titi monkeys by chromosome flow sorting and multidirectional in-situ hybridization. Chromosome Res 13: 85.

    Article  PubMed  CAS  Google Scholar 

  • Dumas F, Stanyon R, Sineo L, Stone G, Bigoni F (2007) Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting. BMC Evol Biol 7(Supplement 2): S11.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B (1979) Chromosomal evolution in primates: tentative phylogeny from Microcebus murinus (Prosimian) to man. Hum Genet 48: 251.

    Article  PubMed  CAS  Google Scholar 

  • Dutrillaux B (1988) New interpretation of the presumed common ancestral karyotype of platyrrhine monkeys. Folia Primatol 50: 226.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J (1981) The ancestral karyotype of platyrrhine monkeys. Cytogenet Cell Genet 30: 232.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Rumpler Y (1995) Phylogenetic relations among prosimii with special reference to Lemuriformes and Malagasy nocturnals. In: Alterman L, Doyle GA, Izard MK, eds. Creatures of the Dark: the Nocturnal Prosimians. New York: Plenum Press, pp. 141–150.

    Google Scholar 

  • Dutrillaux B, Couturier J, Fosse AM (1980) The use of high resolution banding in comparative cytogenetics: comparison between man and Lagothrix lagotricha (Cebidae). Cytogenet Cell Genet 27: 45.

    PubMed  CAS  Google Scholar 

  • Dutrillaux B, Couturier J, Muleris M, Lombard M, Chauvier G (1982) Chromosomal phylogeny of forty-two species or sub-species of cercopithecoids (Primates Catarrhini). Ann Genet 25: 96.

    PubMed  CAS  Google Scholar 

  • Eder V, Ventura M, Ianigro M, Teti M, Rocchi M, Archidiacono N (2003) Chromosome 6 phylogeny in primates and centromere repositioning. Mol Biol Evol 20: 1506.

    Article  PubMed  CAS  Google Scholar 

  • Eizirik E, Murphy WJ, O’Brien SJ (2001) Molecular dating and biogeography of the early placental mammal radiation. J Hered 92: 212.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA (1997) Genetic analysis by chromosome sorting and painting: phylogenetic and diagnostic applications. Eur J Hum Genet 5: 253.

    PubMed  CAS  Google Scholar 

  • Ferguson-Smith MA, Yang F, Rens W, O’Brien PC (2005) The impact of chromosome sorting and painting on the comparative analysis of primate genomes. Cytogenet Genome Res 108: 112.

    Article  PubMed  CAS  Google Scholar 

  • Froenicke L (2005) Origins of primate chromosomes – as delineated by Zoo-FISH and alignments of human and mouse draft genome sequences. Cytogenet Genome Res 108: 122.

    Article  PubMed  CAS  Google Scholar 

  • Garcia F, Nogues C, Ponsa M, Ruiz-Herrera A, Egozcue J, Garcia Caldes M (2000) Chromosomal homologies between humans and Cebus apella (Primates) revealed by ZOO-FISH. Mamm Genome 11: 399.

    Article  PubMed  CAS  Google Scholar 

  • Glazko GV, Nei M (2003) Estimation of divergence times for major lineages of primate species. Mol Biol Evol 20: 424.

    Article  PubMed  CAS  Google Scholar 

  • Gross M, Starke H, Trifonov V, Claussen U, Liehr T, Weise A (2006) A molecular cytogenetic study of chromosome evolution in chimpanzee. Cytogenet Genome Res 112: 67.

    Article  PubMed  CAS  Google Scholar 

  • Groves CP (1989) A Theory of Human and Primate Evolution. Oxford: Clarendon Press.

    Google Scholar 

  • Groves CP (2001) Primate Taxonomy. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31: 113.

    Article  PubMed  CAS  Google Scholar 

  • Horvath JE, Willard HF (2007) Primate comparative genomics: lemur biology and evolution. Trends Genet 23: 173.

    Article  PubMed  CAS  Google Scholar 

  • Houle A (1999) The origin of platyrrhines: an evaluation of the Antarctic scenario and the floating island model. Am J Phys Anthropol 109: 541.

    Article  PubMed  CAS  Google Scholar 

  • Jauch A, Wienberg J, Stanyon R et al. (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89: 8611.

    Article  PubMed  CAS  Google Scholar 

  • Koehler U, Arnold N, Wienberg J, Tofanelli S, Stanyon R (1995) Genomic reorganization and disrupted chromosomal synteny in the siamang (Hylobates syndactylus) revealed by fluorescence in situ hybridization. Am J Phys Anthropol 97: 37.

    Article  PubMed  CAS  Google Scholar 

  • Locke DP, Archidiacono N, Misceo D et al. (2003) Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol 4: 50.

    Google Scholar 

  • Ma J, Zhang L, Suh BB et al. (2006) Reconstructing contiguous regions of an ancestral genome. Genome Res 16: 1557.

    Article  PubMed  CAS  Google Scholar 

  • Martin RD, Soligo C, Tavare S (2007) Primate origins: implications of a cretaceous ancestry. Folia Primatol (Basel) 78: 277.

    Article  Google Scholar 

  • Miller ER, Gunnell GF, Martin RD (2005) Deep time and the search for anthropoid origins. Am J Phys Anthropol Supplement 41: 60.

    Article  Google Scholar 

  • Misceo D, Ventura M, Eder V, Rocchi M, Archidiacono N (2003) Human chromosome 16 conservation in primates. Chromosome Res 11: 323.

    Google Scholar 

  • Misceo D, Cardone MF, Carbone L et al (2005) Evolutionary history of chromosome 20. Mol Biol Evol 22: 360.

    Google Scholar 

  • Montefalcone G, Tempesta S, Rocchi M, Archidiacono N (1999) Centromere repositioning. Genome Res 9: 1184.

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Wienberg J (2001) “Bar-coding” primate chromosomes: molecular cytogenetic screening for the ancestral hominoid karyotype. Hum Genet 109: 85.

    Article  PubMed  CAS  Google Scholar 

  • Muller S, O’Brien PC, Ferguson-Smith MA, Wienberg J (1997) Reciprocal chromosome painting between human and prosimians (Eulemur macaco macaco and E. fulvus mayottensis). Cytogenet Cell Genet 78: 260.

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Stanyon R, O’Brien PC, Ferguson-Smith MA, Plesker R, Wienberg J (1999) Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma 108: 393.

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Hollatz M, Wienberg J (2003) Chromosomal phylogeny and evolution of gibbons (Hylobatidae). Hum Genet 113: 493.

    Article  PubMed  Google Scholar 

  • Müller S, Stanyon R, Finelli P, Archidiacono N, Wienberg J (2000) Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution. Proc Natl Acad Sci USA 97: 206.

    Google Scholar 

  • Murphy WJ, Stanyon R, O’Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping. Genome Biol 2: REVIEWS0005.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Pevzner PA, O’Brien SJ (2004) Mammalian phylogenomics comes of age. Trends Genet 20: 631.

    Article  PubMed  CAS  Google Scholar 

  • Murphy WJ, Larkin DM, Everts-van der Wind A et al. (2005) Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309: 613.

    Article  PubMed  CAS  Google Scholar 

  • Neusser M, Stanyon R, Bigoni F, Wienberg J, Muller S (2001) Molecular cytotaxonomy of New World monkeys (Platyrrhini) – comparative analysis of five species by multi-color chromosome painting gives evidence for a classification of Callimico goeldii within the family of Callitrichidae. Cytogenet Cell Genet 94: 206.

    Article  PubMed  CAS  Google Scholar 

  • Nie W, Liu R, Chen Y, Wang J, Yang F (1998) Mapping chromosomal homologies between humans and two langurs (Semnopithecus francoisi and S. phayrei) by chromosome painting. Chromosome Res 6: 447.

    Article  PubMed  CAS  Google Scholar 

  • Nie W, O’Brien PC, Fu B et al. (2006) Chromosome painting between human and lorisiform prosimians: evidence for the HSA 7/16 synteny in the primate ancestral karyotype. Am J Phys Anthropol 129: 250.

    Article  PubMed  Google Scholar 

  • O’Brien SJ, Stanyon R (1999) Phylogenomics. Ancestral primate viewed. Nature 402: 365.

    Article  PubMed  CAS  Google Scholar 

  • Opazo JC, Wildman DE, Prychitko T, Johnson RM, Goodman M (2006) Phylogenetic relationships and divergence times among New World monkeys (Platyrrhini, Primates). Mol Phylogenet Evol 40: 274.

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Goodman M (2001) Catarrhine phylogeny: noncoding DNA evidence for a diphyletic origin of the mangabeys and for a human-chimpanzee clade. Mol Phylogenet Evol 18: 14.

    Article  PubMed  CAS  Google Scholar 

  • Page SL, Chiu C, Goodman M (1999) Molecular phylogeny of Old World monkeys (Cercopithecidae) as inferred from gamma-globin DNA sequences. Mol Phylogenet Evol 13: 348.

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Landegent J, Collins C et al. (1988) Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proc Natl Acad Sci USA 85: 9138.

    Article  PubMed  CAS  Google Scholar 

  • Poux C, Douzery EJ (2004) Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124: 1.

    Article  PubMed  Google Scholar 

  • Poux C, Chevret P, Huchon D, de Jong WW, Douzery EJ (2006) Arrival and diversification of caviomorph rodents and platyrrhine primates in South America. Syst Biol 55: 228.

    Article  PubMed  Google Scholar 

  • Ray DA, Xing J, Hedges DJ et al. (2005) Alu insertion loci and platyrrhine primate phylogeny. Mol Phylogenet Evol 35: 117.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Dutrillaux B (1998) Origin of human chromosome 21 and its consequences: a 50-million-year-old story. Chromosome Res 6: 263.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (1996) ZOO-FISH suggests a complete homology between human and capuchin monkey (Platyrrhini) euchromatin. Genomics 36: 417.

    Article  PubMed  CAS  Google Scholar 

  • Richard F, Lombard M, Dutrillaux B (2000) Phylogenetic origin of human chromosomes 7, 16, and 19 and their homologs in placental mammals. Genome Res 10: 644.

    Article  PubMed  CAS  Google Scholar 

  • Roberto R, Capozzi O, Wilson RK et al. (2007) Molecular refinement of gibbon genome rearrangements. Genome Res 17: 249.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Garcia F, Fronicke L et al. (2004) Conservation of aphidicolin-induced fragile sites in Papionini (Primates) species and humans. Chromosome Res 12: 683.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Herrera A, Garcia F, Aguilera M, Garcia M, Ponsa Fontanals M (2005) Comparative chromosome painting in Aotus reveals a highly derived evolution. Am J Primatol 65: 73.

    Article  PubMed  Google Scholar 

  • Ruiz-Herrera A, Castresana J, Robinson TJ (2006) Is mammalian chromosomal evolution driven by regions of genome fragility? Genome Biol 7: R115.

    Article  PubMed  CAS  Google Scholar 

  • Rumpler Y, Couturier J, Warter S, Dutrillaux B (1983) The karyotype of Galago crassicaudatus is ancestral for lorisiforms. Folia Primatol 40: 227.

    PubMed  CAS  Google Scholar 

  • Rumpler Y, Water S, Ishak B, Dutrillaux B (1989) Chromosomal evolution in prosimians. Hum Evol 4: 157.

    Article  Google Scholar 

  • Schmitz J, Roos C, Zischler H (2005) Primate phylogeny: molecular evidence from retroposons. Cytogenet Genome Res 108: 26.

    Article  PubMed  CAS  Google Scholar 

  • Schneider H, Canavez FC, Sampaio I, Moreira MA, Tagliaro CH, Seuanez HN (2001) Can molecular data place each neotropical monkey in its own branch? Chromosoma 109: 515.

    Article  PubMed  CAS  Google Scholar 

  • Schrago CG (2007) On the time scale of new world primate diversification. Am J Phys Anthropol 132: 344.

    Article  PubMed  Google Scholar 

  • Seuanez HN (1979) The Phylogeny of Human Chromosomes. Berlin: Springer Verlag.

    Google Scholar 

  • Seuanez HN, Bonvicino CR, Moreira MA (2005) The primates of the Neotropics: genomes and chromosomes. Cytogenet Genome Res 108: 38.

    Article  PubMed  CAS  Google Scholar 

  • Sherlock JK, Griffin DK, Delhanty JD, Parrington JM (1996) Homologies between human and marmoset (Callithrix jacchus) chromosomes revealed by comparative chromosome painting. Genomics 33: 214.

    Article  PubMed  CAS  Google Scholar 

  • Singer SS, Schmitz J, Schwiegk C, Zischler H (2003) Molecular cladistic markers in New World monkey phylogeny (Platyrrhini, Primates). Mol Phylogenet Evol 26: 490.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Consigliere S, Muller S, Morescalchi A, Neusser M, Wienberg J (2000) Fluorescence in situ hybridization (FISH) maps chromosomal homologies between the dusky titi and squirrel monkey. Am J Primatol 50: 95.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Consigliere S, Bigoni F, Ferguson-Smith M, O’Brien PC, Wienberg J (2001) Reciprocal chromosome painting between a New World primate, the woolly monkey, and humans. Chromosome Res 9: 97.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Koehler U, Consigliere S (2002) Chromosome painting reveals that galagos have highly derived karyotypes. Am J Phys Anthropol 117: 319.

    Article  PubMed  Google Scholar 

  • Stanyon R, Bonvicino CR, Svartman M, Seuanez HN (2003) Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n = 16) known in primates. Chromosoma 112: 201.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Bigoni F, Slaby T et al. (2004) Multi-directional chromosome painting maps homologies between species belonging to three genera of New World monkeys and humans. Chromosoma 113: 305.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Bruening R, Stone G, Shearin A, Bigoni F (2005) Reciprocal painting between humans, De Brazza’s and patas monkeys reveals a major bifurcation in the Cercopithecini phylogenetic tree. Cytogenet Genome Res 108: 175.

    Article  PubMed  CAS  Google Scholar 

  • Stanyon R, Dumas F, Stone G, Bigoni F (2006) Multidirectional chromosome painting reveals a remarkable syntenic homology between the greater galagos and the slow loris. Am J Primatol 68: 349.

    Article  PubMed  CAS  Google Scholar 

  • Steiper ME, Ruvolo M (2003) New World monkey phylogeny based on X-linked G6PD DNA sequences. Mol Phylogenet Evol 27: 121.

    Article  PubMed  CAS  Google Scholar 

  • Steiper ME, Young NM (2006) Primate molecular divergence dates. Mol Phylogenet Evol 41: 384.

    Article  PubMed  CAS  Google Scholar 

  • Strasser E, Delson E (1987) Cladistic analysis of cercopithecid relationships. J Hum Evol 16: 81.

    Article  Google Scholar 

  • Takacs Z, Morales JC, Geissmann T, Melnick DJ (2005) A complete species-level phylogeny of the Hylobatidae based on mitochondrial ND3-ND4 gene sequences. Mol Phylogenet Evol 36: 456.

    Article  PubMed  CAS  Google Scholar 

  • Tosi AJ, Disotell TR, Morales JC, Melnick DJ (2003) Cercopithecine Y-chromosome data provide a test of competing morphological evolutionary hypotheses. Mol Phylogenet Evol 27: 510.

    Article  PubMed  CAS  Google Scholar 

  • Tosi AJ, Melnick DJ, Disotell TR (2004) Sex chromosome phylogenetics indicate a single transition to terrestriality in the guenons (tribe Cercopithecini). J Hum Evol 46: 223.

    Article  PubMed  Google Scholar 

  • Tosi AJ, Detwiler KM, Disotell TR (2005) X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). Mol Phylogenet Evol 36: 58.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Archidiacono N, Rocchi M (2001) Centromere emergence in evolution. Genome Res 11: 595.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Mudge JM, Palumbo V et al. (2003) Neocentromeres in 15q24–26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13: 2059.

    Article  PubMed  CAS  Google Scholar 

  • Ventura M, Weigl S, Carbone L et al. (2004) Recurrent sites for new centromere seeding. Genome Res 9: 169.

    Google Scholar 

  • Ventura M, Antonacci F, Cardone MF et al. (2007) Evolutionary formation of new centromeres in macaque. Science 316: 243.

    Article  PubMed  CAS  Google Scholar 

  • Warter S, Hauwy M, Dutrillaux B, Rumpler Y (2005) Application of molecular cytogenetics for chromosomal evolution of the Lemuriformes (Prosimians). Cytogenet Genome Res 108: 197.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J (2005) Fluorescence in situ hybridization to chromosomes as a tool to understand human and primate genome evolution. Cytogenet Genome Res 108: 139.

    Article  PubMed  CAS  Google Scholar 

  • Wienberg J, Stanyon R (1998) Comparative chromosome painting of primate genomes. ILAR J 39: 77.

    PubMed  Google Scholar 

  • Wimmer R, Kirsch S, Rappold GA, Schempp W (2005) Evolutionary breakpoint analysis on Y chromosomes of higher primates provides insight into human Y evolution. Cytogenet Genome Res 108: 204.

    Article  PubMed  CAS  Google Scholar 

  • Xing J, Wang H, Han K et al. (2005) A mobile element based phylogeny of Old World monkeys. Mol Phylogenet Evol 37: 872.

    Article  PubMed  CAS  Google Scholar 

  • Yoder AD, Cartmill M, Ruvolo M, Smith K, Vilgalys R (1996) Ancient single origin for Malagasy primates. Proc Natl Acad Sci USA 93: 5122.

    Article  PubMed  CAS  Google Scholar 

  • Yunis JJ, Prakash O (1982) The origin of man: a chromosomal pictorial legacy. Science 215: 1525.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Stanyon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10577_2007_1209_MOESM1.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanyon, R., Rocchi, M., Capozzi, O. et al. Primate chromosome evolution: Ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16, 17–39 (2008). https://doi.org/10.1007/s10577-007-1209-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1209-z

Key words

Navigation