Skip to main content
Log in

Evolutionary cytogenetics in salamanders

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Salamanders (Amphibia: Caudata/Urodela) have been the subject of numerous cytogenetic studies, and data on karyotypes and genome sizes are available for most groups. Salamanders show a more-or-less distinct dichotomy between families with large chromosome numbers and interspecific variation in chromosome number, relative size, and shape (i.e. position of the centromere), and those that exhibit very little variation in these karyological features. This dichotomy is the basis of a major model of karyotype evolution in salamanders involving a kind of ‘karyotypic orthoselection’. Salamanders are also characterized by extremely large genomes (in terms of absolute mass of nuclear DNA) and extensive variation in genome size (and overall size of the chromosomes), which transcends variation in chromosome number and shape. The biological significance and evolution of chromosome number and shape within the karyotype is not yet understood, but genome size variation has been found to have strong phenotypic, biogeographic, and phylogenetic correlates that reveal information about the biological significance of this cytogenetic variable. Urodeles also present the advantage of only 10 families and less than 600 species, which facilitates the analysis of patterns within the entire order. The purpose of this review is to present a summary of what is currently known about overall patterns of variation in karyology and genome size in salamanders. These patterns are discussed within an evolutionary context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett MD, Smith JB (1971) The 4C nuclear DNA content of several Hordeum genotypes. Can J Genet Cytol 13: 607–611.

    Google Scholar 

  • Bennett MD, Leitch IJ (2005) In: Gregory TR, ed. The Evolution of the Genome. Burlington, MA: Elsevier Academic Press, pp. 90–164.

    Google Scholar 

  • Bi K, Bogart JP (2006) Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res 112: 307–312.

    Article  PubMed  CAS  Google Scholar 

  • Bogart JP (1980) Evolutionary implications of polyploidy in amphibians and reptiles. In: Lewis WH, ed. Polyploidy: Biological Relevance. New York: Plenum Press, pp. 341–378.

    Google Scholar 

  • Bogart JP (1982) Ploidy and genetic diversity in Ontario salamanders of the Ambystoma jeffersonianum complex revealed through an electrophoretic examination of larvae. Can J Zool 60: 848–855.

    Article  Google Scholar 

  • Bogart JP (2003) Genetics and systematics of hybrid species. In: Sever DM, ed. Reproductive Biology and Phylogeny of Urodela. Enfield, NH: Science Publishers, pp. 109–134.

    Google Scholar 

  • Bogart JP, Licht LE (1986) Reproduction and the origin of polyploids in hybrid salamanders of the genus Ambystoma. Can J Genet Cytol 28: 605–617.

    PubMed  CAS  Google Scholar 

  • Bogart JP, Lowcock LA, Zeyl CW, Mable BK (1987) Genome constitution and reproductive biology of hybrid salamanders, genus Ambystoma, on Kelleys island in Lake Erie. Can J Zool 65: 2188–2201.

    Google Scholar 

  • Callan HG, Lloyd L (1960) Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti). Philos Trans R Soc London Ser B 243: 135–219.

    Article  Google Scholar 

  • Cavalier-Smith T, ed. (1985) The Evolution of Genome Size. London: Wiley.

    Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature Lond 284: 617–618.

    Article  Google Scholar 

  • Green DM (1991) Supernumerary chromosomes in amphibians. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. San Diego: Academic Press, pp. 333–357.

    Google Scholar 

  • Green DM, Sessions SK, eds (1991) Amphibian Cytogenetics and Evolution. San Diego: Academic Press.

    Google Scholar 

  • Green DM, Sessions SK (2007) Karyology and cytogenetics. In: Heatwole H, ed. Amphibian Biology, vol. 7. Chipping Norton Australia: Surrey Beatty & Sons, pp. 2757–2842.

    Google Scholar 

  • Gregory TR (2005a) Genome size evolution in animals. In: Gregory TR, ed. The Evolution of the Genome. Burlington, MA: Elsevier Academic Press, pp. 3–87.

    Google Scholar 

  • Gregory TR (2005b) Animal Genome Size Database. http://www.genomesize.com.

  • Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR, ed. The Evolution of the Genome. Burlington, MA: Elsevier Academic Press, pp. 427–517.

    Google Scholar 

  • Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginner’s guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50: 735–749.

    PubMed  CAS  Google Scholar 

  • Horner HA, Macgregor HC (1983) C value and cell volume: their significance in the evolution and development of amphibians. J Cell Sci 63: 135–146.

    PubMed  CAS  Google Scholar 

  • Humphrey DG (1958) New chromosome number for the order Caudata. Science 128: 304.

    Article  PubMed  CAS  Google Scholar 

  • Iizuka K, Yazawa S (1994) The karyotype C-bands and AgNO3 bands of a lungless salamander from Korea – Onychodactylus fischeri (Boulenger) (Amphibia Urodela). Experientia 50: 171–175.

    Article  Google Scholar 

  • Iizuka K, Kezer J, Seto T (1989) Karyotype of two rare species of hynobiid salamanders from Taiwan Hynobius sonani (Maki) and Hynobius formosanus Maki (Urodela). Genetica 78: 105–110.

    Article  Google Scholar 

  • Ikebe C, Kuro-o M, Yamada H, Kohno S (1990) Cytogenetic studies of Hynobiidae (Urodela). X. Morphological variation of chromosome 10 in ten pond-type Hynobius from Korea and Japan, with comments on phylogenetic relationships. J Evol Biol 3: 155–170.

    Article  Google Scholar 

  • Kezer J, Set T, Pomerat CM (1965) Cytological evidence against parallel evolution of Necturus and Proteus. Am Natur 99: 153–158.

    Article  Google Scholar 

  • Kezer J, Sessions SK, Léon P (1989) The meiotic structure and behavior of the strongly heteromorphic X/Y sex chromosomes of Neotropical plethodontid salamanders of the genus Oedipina. Chromosoma 98: 433–442.

    Article  Google Scholar 

  • Kidwell MG (2005) Transposable elements. In: Gregory TR, ed. The Evolution of the Genome. Burlington, MA: Elsevier Academic Press, pp. 165–223.

    Google Scholar 

  • King M (1991) The evolution of heterochromatin in the amphibian genome. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. San Diego: Academic Press, pp. 359–391.

    Google Scholar 

  • Kohno S, Kuro-o M, Ikebe C (1991) Cytogenegtics and evolution of Hynobiid salamanders. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. San Diego: Academic Press San Diego, pp. 67–88.

    Google Scholar 

  • Larson A, Dimmick WW (1993) Phylogenetic relationships of the salamander families: an analysis of congruence among morphological and molecular characters. Herpetol Monogr 7: 77–93.

    Article  Google Scholar 

  • León PE, Kezer J (1974) The chromosomes of Siren intermedia nettingi (Goin) and their significance to comparative slamander karyology. Herpetologica 30: 1–11.

    Google Scholar 

  • Litvinchuk SN, Rosanov JM, Borkin LJ (2007) Correlations of geographic distribution and temperature of embryonic development with the nuclear DNA content in the Salamandridae (Urodela Amphibia). Genome 50: 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Macgregor HC (1991) Chromosome heteromorphism in newts (Triturus) and its significance in relation to evolution and development. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. San Diego: Academic Press, pp. 175–215.

    Google Scholar 

  • Macgregor HC, Horner H (1980) Heteromorphism of chromosome I, a requirement for normal development in crested newts. Chromosoma 76: 111–122.

    Article  Google Scholar 

  • Macgregor HC, Jones C (1977) Chromosomes DNA sequences, and evolution in salamanders of the genus Aneides. Chromosoma 63: 1–9.

    Article  Google Scholar 

  • Macgregor HC, Mizuno S (1976) In-situ hybridization of ‘nick-translated’ H-ribosomal DNA to chromosomes from salamanders. Chromosoma 54: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Macgregor HC, Sessions SK (1986a) The biological significance of variation in satellite DNA and heterochromatin in newts of the genus Triturus: an evolutionary perspective. Philos Trans R Soc Lond 312: 243–259.

    Article  CAS  Google Scholar 

  • Macgregor HC, Sessions SK (1986b) Models for evolution in large genomes and karyotypes of Urodeles. Verh Dtsch Zool Ges 79: 137–148.

    Google Scholar 

  • Macgregor HC, Sherwood S (1979) The nucleolus organizers of Plethedon and Aneides located by in-situ nucleic acid hybirdization with Xenopus 3H-ribosomal RNA. Chromosoma 72: 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Macgregor HC, Uzzell TM (1964) Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science 143: 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  • Macgregor HC, Sessions SK, Arntzen JW (1990) An integrative analysis of phylogenetic relationships among newts of the genus Triturus (family: Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J Evol Biol 3: 329–374.

    Article  Google Scholar 

  • Mancino GI, Ragghhianti M, Bucci-Innocenti S (1977) Cytoaxonomy and cytogenetics in Europeen newt species. In: Taylor DH, Guttman EI, eds. The Reproductive Biology of Amphibians. New York: Plenum Press, pp. 411–448.

    Google Scholar 

  • Martin CC, Gordon R (1995) Differentiation trees, a junk DNA molecular clock, and the evolution of neoteny in salamanders. J Evol Biol 8: 339–354.

    Article  Google Scholar 

  • Mizuno S, Macgregor HC (1974) Chromosomes DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosoma 48: 239–296.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno S, Andrews C, Macgregor HC (1976) Interspecific ‘common’ repetitive DNA sequences in salamanders of the genus Plethodon. Chromosoma 58: 1–31.

    Article  PubMed  CAS  Google Scholar 

  • Moler PE, Kezer J (1993) Karyology and systematics of the salamander genus Pseudobranchus (Sirenidae). Copeia 1993: 39–47.

    Article  Google Scholar 

  • Morescalchi A (1973) Amphibia. In: Chiarelli AB, Campanna E, eds. Cytotaxonomy and Vertebrate Evolution. London: Academic Press, pp. 233–348.

    Google Scholar 

  • Morescalchi A (1975) Chromosome evolution in the caudate Amphibia. Evol Biol 8: 339–387.

    CAS  Google Scholar 

  • Morescalchi A (1979) New developments in vertebrate cytotaxonomy. I. Cytotaxonomy of the amphibians. Genetica 50: 179–193.

    Article  Google Scholar 

  • Morescalchi A (1990) Cytogenetics and the problem of Lissamphibian relationships. In: Olmo E, ed. Cytogenetics of Amphibians and Reptiles. Basel: Birkhauser, pp. 1–19.

    Google Scholar 

  • Morescalchi A, Olmo E (1974) Sirenids a family of polyploid Urodeles? Experientia 30: 491–492.

    Article  PubMed  CAS  Google Scholar 

  • Morgan GT (1978) Absence of chiasmata from the heteromorphic region of chromosome I during spermatogenesis in Triturus cristatus carnifex. Chromosoma 66: 269–280.

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 43: 165–229.

    Google Scholar 

  • Murakami T, Maki N, Nishida-Umehara, Matsuda Y, Agata K (2007) Establishment of high-resolution FISH mapping system and its application for molecular bytogenetic characterization of chromosomes in the newt Cynops pyrrhogaster (Urodela Amphibia). Chromosome Res 15: 471–484.

  • Ohno S (1970) Evolution by Gene Duplication. London: Allen and Unwin.

    Google Scholar 

  • Orgel LE, Crick FHC (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Putta S, Smith JJ, Waler JA et al. (2004) From biomedicine to natural history research: EST resources for ambystomatid salamanders. BMC Genomics 54: 1–17.

    Google Scholar 

  • Roth G, Blanke J, Wake DB (1994) Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc Natl Acad Sci USA 91: 4796–4800.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Nanda I, Steinlein C, Kausch K, Haaf T, Epplen JT (1991) Sex determining mechanisms and sex chromosomes in Amphibia. In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. San Diego: Academic Press, pp. 393–430.

    Google Scholar 

  • Sessions SK (1980) Evidence for a highly differentiated sex chromosome heteromorphism in the salamander Necturus maculosus (Rafinesque). Chromosoma 77: 157–168.

    Article  Google Scholar 

  • Sessions SK (1982) Cytogenetics of diploid and triploid salamanders of the Ambystoma jeffersonianum complex. Chromosoma 84: 599–621.

    Article  Google Scholar 

  • Sessions SK (1984) Cytogenetics and evolution in salamanders. PhD Dissertation University of California Berekely.

  • Sessions SK, Kezer J (1987) Cytogenetic evolution in the plethodontid salamander genus Aneides. Chromosoma (Berl) 95: 17–30.

    Article  Google Scholar 

  • Sessions SK, Kezer J (1991) Evolutionary cytogenetics of Bolitoglossine salamanders (Family Plethodontidae). In: Green DM, Sessions SK, eds. Amphibian Cytogenetics and Evolution. San Diego: Academic Press, pp. 89–130.

    Google Scholar 

  • Sessions SK, Larson A (1987) Developmental correlates of genome size in Plethodontid salamanders and their implications for genome evolution. Evolution 41: 1239–1251.

    Article  Google Scholar 

  • Sessions SK, Wiktorowski J (2002) Population cytogenetics of the Plethodontid Salamander Eurycea wilderae. In: Bruce RC, Jaeger RC, Houck L, eds. The Biology of Plethodontid Salamanders. New York: Plenum, pp. 327–344.

    Google Scholar 

  • Sessions SK, Wiley JE (1985) Chromosome evolution in salamanders of the genus Necturus. Brimleyana 10: 37–52.

    Google Scholar 

  • Sessions SK, Léon PE, Kezer J (1982) Cytogenetics of the Chinese Giant Salamander Andrias davidianus (Blanchard): the evolutionary significance of cryptobranchoid karyotypes. Chromosoma 86: 341–357.

    Article  Google Scholar 

  • Sessions SK, Macgregor HC, Schmid M, Haaf T (1988) Cytology, embryology, and evolution of the developmental arrest syndrome in newts of the genus Triturus (Caudata: Salamandridae). J Exp Zool 248: 321–334.

    Article  PubMed  CAS  Google Scholar 

  • Sessions SK, Stöck M, Vieites DR, Quarles R, Min MS, Wake DB (2008) Cytogenetic analysis of the asian plethodontid salamander Karsenia koreana: Devidence for karyotypic conservation, chromosome repatterning, and genome size evolution. Chromosome Res (in press).

  • Sims SH, Macgregor HC, Pellat PA, Horner HA (1984) Chromosome I in crested and marbled newts (Triturus). An extraordinary case of heteromorphism and independent chromosome evolution. Chromosoma 89: 169–185.

    Article  Google Scholar 

  • Spolsky C, Phillips CA, Uzzell T (1992) Gynogenetic reproduction in hybrid mole salamanders (Genus Ambystoma). Evolution 46: 1935–1944.

    Article  Google Scholar 

  • Uzzell TM (1964) Relations of the diploid and triploid species of the Ambystoma jeffersonianum complex (Amphibia Caudata). Copeia 1964: 257–300.

    Article  Google Scholar 

  • Vinogradov AE (1999) Intron-genome size relationship on a large evolutionary scale. J Mol Evol 49: 376–384.

    Article  PubMed  CAS  Google Scholar 

  • Voss SR, Smith JJ, Gardiner DM, Parichy DM (2001) Conserved vertebrate chromosome segments in the large salamander genome. Genetics 158: 735–746.

    PubMed  CAS  Google Scholar 

  • White MJD (1973) Animal Cytology and Evolution, 3rd edn. London: Cambridge Universty Press.

    Google Scholar 

  • White MJD (1978) Modes of Speciation. San Fransisco: WH Freeman and Co.

    Google Scholar 

  • Weins JJ, Bonett RM, Chippindale PT (2005) Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. Syst Biol 54: 91–110.

    Article  Google Scholar 

  • Zhang P, Chen Y, Zhou H et al. (2006) Phylogeny, evolution, and biogeography of asiatic salamanders (Hynobiidae). Proc Natl Acad Sci USA 103:7360–7365.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley K. Sessions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sessions, S.K. Evolutionary cytogenetics in salamanders. Chromosome Res 16, 183–201 (2008). https://doi.org/10.1007/s10577-007-1205-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-007-1205-3

Key words

Navigation