Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124:339–352. doi:10.1007/s00401-012-1022-4
CAS
Article
PubMed
Google Scholar
Al-Sarraj S, King A, Troakes C et al (2011) p62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol 122:691–702. doi:10.1007/s00401-011-0911-2
CAS
Article
PubMed
Google Scholar
Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445. doi:10.1002/ana.21154
CAS
Article
PubMed
Google Scholar
Anagnostou G, Akbar MT, Paul P, Angelinetta C, Steiner TJ, de Belleroche J (2010) Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol Aging 31:969–985. doi:10.1016/j.neurobiolaging.2008.07.005
CAS
Article
PubMed
Google Scholar
Anderson P, Kedersha N (2009) RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10:430–436. doi:10.1038/nrm2694
CAS
Article
PubMed
Google Scholar
Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611. doi:10.1016/j.bbrc.2006.10.093
CAS
Article
PubMed
Google Scholar
Arai T, Mackenzie IR, Hasegawa M et al (2009) Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117:125–136. doi:10.1007/s00401-008-0480-1
CAS
Article
PubMed
Google Scholar
Armakola M, Higgins MJ, Figley MD et al (2012) Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet 44:1302–1309. doi:10.1038/ng.2434
CAS
Article
PubMed
Google Scholar
Arnold ES, Ling S-C, Huelga SC et al (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci USA 110:E736–E745. doi:10.1073/pnas.1222809110
CAS
Article
PubMed
Google Scholar
Ash PEA, Bieniek KF, Gendron TF et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646. doi:10.1016/j.neuron.2013.02.004
CAS
Article
PubMed
Google Scholar
Ash PEA, Zhang YJ, Roberts CM et al (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19:3206–3218. doi:10.1093/hmg/ddq230
CAS
Article
PubMed
Google Scholar
Baloh RH (2011) TDP-43: the relationship between protein aggregation and neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. FEBS J 278:3539–3549. doi:10.1111/j.1742-4658.2011.08256.x
CAS
Article
PubMed
Google Scholar
Barmada SJ, Skibinski G, Korb E, Rao EJ, Wu JY, Finkbeiner S (2010) Cytoplasmic mislocalization of TDP-43 is toxic to neurons and enhanced by a mutation associated with familial amyotrophic lateral sclerosis. J Neurosci 30:639–649. doi:10.1523/JNEUROSCI.4988-09.2010
CAS
Article
PubMed
Google Scholar
Basso M, Samengo G, Nardo G et al (2009) Characterization of detergent-insoluble proteins in ALS indicates a causal link between nitrative stress and aggregation in pathogenesis. PLoS ONE 4:e8130. doi:10.1371/journal.pone.0008130.t002
Article
PubMed
CAS
Google Scholar
Beck J, Poulter M, Hensman D et al (2013) Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am J Hum Genet 92:345–353. doi:10.1016/j.ajhg.2013.01.011
CAS
Article
PubMed
Google Scholar
Belly A, Moreau-Gachelin F, Sadoul R, Goldberg Y (2005) Delocalization of the multifunctional RNA splicing factor TLS/FUS in hippocampal neurones: exclusion from the nucleus and accumulation in dendritic granules and spine heads. Neurosci Lett 379:152–157. doi:10.1016/j.neulet.2004.12.071
CAS
Article
PubMed
Google Scholar
Belzil VV, Daoud H, Desjarlais A et al (2011) Analysis of OPTN as a causative gene for amyotrophic lateral sclerosis. Neurobiol Aging 32(555):e513–e554. doi:10.1016/j.neurobiolaging.2010.10.001
Google Scholar
Benajiba L, Le Ber I, Camuzat A et al (2009) TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol 65:470–473. doi:10.1002/ana.21612
CAS
Article
PubMed
Google Scholar
Bentmann E, Neumann M, Tahirovic S, Rodde R, Dormann D, Haass C (2012) Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 287:23079–23094. doi:10.1074/jbc.M111.328757
CAS
Article
PubMed
Google Scholar
Bieniek KF, Murray ME, Rutherford NJ et al (2013) Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion. Acta Neuropathol 125:289–302. doi:10.1007/s00401-012-1048-7
CAS
Article
PubMed
Google Scholar
Bigio EH, Wu JY, Deng HX et al (2013) Inclusions in frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP) and amyotrophic lateral sclerosis (ALS), but not FTLD with FUS proteinopathy (FTLD-FUS), have properties of amyloid. Acta Neuropathol 125:463–465. doi:10.1007/s00401-013-1089-6
Article
PubMed
Google Scholar
Bilican B, Serio A, Barmada SJ et al (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proc Natl Acad Sci USA 109:5803–5808. doi:10.1073/pnas.1202922109
CAS
Article
PubMed
Google Scholar
Borghero G, Floris G, Cannas A et al (2011) A patient carrying a homozygous p.A382T TARDBP missense mutation shows a syndrome including ALS, extrapyramidal symptoms, and FTD. Neurobiol Aging 32(2327):e2321–e2325. doi:10.1016/j.neurobiolaging.2011.06.009
Google Scholar
Borroni B, Bonvicini C, Alberici A et al (2009) Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 30:E974–E983. doi:10.1002/humu.21100
CAS
Article
PubMed
Google Scholar
Bosco DA, Lemay N, Ko HK et al (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19:4160–4175. doi:10.1093/hmg/ddq335
CAS
Article
PubMed
Google Scholar
Braak H, Ludolph A, Thal DR, Del Tredici K (2010) Amyotrophic lateral sclerosis: dash-like accumulation of phosphorylated TDP-43 in somatodendritic and axonal compartments of somatomotor neurons of the lower brainstem and spinal cord. Acta Neuropathol 120:67–74. doi:10.1007/s00401-010-0683-0
CAS
Article
PubMed
Google Scholar
Brettschneider J, Deerlin VM, Robinson JL et al (2012) Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol 123:825–839. doi:10.1007/s00401-012-0970-z
Article
PubMed
CAS
Google Scholar
Brouwers N, Bettens K, Gijselinck I et al (2010) Contribution of TARDBP to Alzheimer’s disease genetic etiology. J Alzheimers Dis 21:423–430. doi:10.3233/JAD-2010-100198
CAS
PubMed
Google Scholar
Byrne S, Walsh C, Lynch C et al (2011) Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 82:623–627. doi:10.1136/jnnp.2010.224501
Article
PubMed
Google Scholar
Caccamo A, Majumder S, Deng JJ, Bai Y, Thornton FB, Oddo S (2009) Rapamycin rescues TDP-43 mislocalization and the associated low molecular mass neurofilament instability. J Biol Chem 284:27416–27424. doi:10.1074/jbc.M109.031278
CAS
Article
PubMed
Google Scholar
Chen AKH, Lin RYY, Hsieh EZJ et al (2010) Induction of amyloid fibrils by the C-terminal fragments of TDP-43 in amyotrophic lateral sclerosis. J Am Chem Soc 132:1186–1187. doi:10.1021/ja9066207
CAS
Article
PubMed
Google Scholar
Chen Y, Yang M, Deng J et al (2011) Expression of human FUS protein in Drosophila leads to progressive neurodegeneration. Protein Cell 2:477–486. doi:10.1007/s13238-011-1065-7
CAS
Article
PubMed
Google Scholar
Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220. doi:10.1038/nrneurol.2010.18
CAS
Article
PubMed
Google Scholar
Chiang HH, Andersen PM, Tysnes OB, Gredal O, Christensen PB, Graff C (2012) Novel TARDBP mutations in Nordic ALS patients. J Hum Genet 57:316–319. doi:10.1038/jhg.2012.24
CAS
Article
PubMed
Google Scholar
Chio A, Calvo A, Moglia C et al (2010) Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. Arch Neurol 67:1002–1009. doi:10.1001/archneurol.2010.173
Article
PubMed
Google Scholar
Collins M, Riascos D, Kovalik T et al (2012) The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients. Acta Neuropathol 124:717–732. doi:10.1007/s00401-012-1045-x
CAS
Article
PubMed
Google Scholar
Colombrita C, Zennaro E, Fallini C et al (2009) TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem 111:1051–1061. doi:10.1111/j.1471-4159.2009.06383.x
CAS
Article
PubMed
Google Scholar
Corrado L, Ratti A, Gellera C et al (2009) High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat 30:688–694. doi:10.1002/humu.20950
CAS
Article
PubMed
Google Scholar
Couthouis J, Hart MP, Shorter J et al (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci USA 108:20881–20890. doi:10.1073/pnas.1109434108
CAS
Article
PubMed
Google Scholar
Crippa V, Sau D, Rusmini P et al (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19:3440–3456. doi:10.1093/hmg/ddq257
CAS
Article
PubMed
Google Scholar
D’Ambrogio A, Buratti E, Stuani C et al (2009) Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37:4116–4126. doi:10.1093/nar/gkp342
Article
PubMed
CAS
Google Scholar
Daigle JG, Lanson NA, Smith RB et al (2013) RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 22:1193–1205. doi:10.1093/hmg/dds526
CAS
Article
PubMed
Google Scholar
Dammer EB, Fallini C, Gozal YM et al (2012) Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS ONE 7:e38658. doi:10.1371/journal.pone.0038658.t005
CAS
Article
PubMed
Google Scholar
DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256. doi:10.1016/j.neuron.2011.09.011
CAS
Article
PubMed
Google Scholar
Del Bo R, Tiloca C, Pensato V et al (2011) Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 82:1239–1243. doi:10.1136/jnnp.2011.242313
Article
PubMed
Google Scholar
Deng H-X, Bigio EH, Zhai H et al (2011) Differential involvement of optineurin in amyotrophic lateral sclerosis with or without SOD1 mutations. Arch Neurol 68:1057–1061. doi:10.1001/archneurol.2011.178
Article
PubMed
Google Scholar
Deng HX, Chen W, Hong S-T et al (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 477:211–215. doi:10.1038/nature10353
CAS
Article
PubMed
Google Scholar
Deng HX, Zhai H, Bigio EH et al (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 67:739–748. doi:10.1002/ana.22051
CAS
PubMed
Google Scholar
Dewey CM, Cenik B, Sephton CF et al (2011) TDP-43 is directed to stress granules by sorbitol, a novel physiological osmotic and oxidative stressor. Mol Cell Biol 31:1098–1108. doi:10.1128/MCB.01279-10
CAS
Article
PubMed
Google Scholar
Doi H, Koyano S, Suzuki Y, Nukina N, Kuroiwa Y (2010) The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases. Neurosci Res 66:131–133. doi:10.1016/j.neures.2009.10.004
CAS
Article
PubMed
Google Scholar
Dormann D, Capell A, Carlson AM et al (2009) Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin. J Neurochem 110:1082–1094. doi:10.1111/j.1471-4159.2009.06211.x
CAS
Article
PubMed
Google Scholar
Dormann D, Rodde R, Edbauer D et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29:2841–2857. doi:10.1038/emboj.2010.143
CAS
Article
PubMed
Google Scholar
Elden AC, Kim H-J, Hart MP et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075. doi:10.1038/nature09320
CAS
Article
PubMed
Google Scholar
Fallini C, Bassell GJ, Rossoll W (2012) The ALS disease protein TDP-43 is actively transported in motor neuron axons and regulates axon outgrowth. Hum Mol Genet 21:3703–3718. doi:10.1093/hmg/dds205
CAS
Article
PubMed
Google Scholar
Farg MA, Soo KY, Walker AK et al (2012) Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiol Aging 33:2855–2868. doi:10.1016/j.neurobiolaging.2012.02.009
CAS
Article
PubMed
Google Scholar
Farg MA, Soo KY, Warraich ST, Sundaramoorthy V, Blair IP, Atkin JD (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22:717–728. doi:10.1093/hmg/dds479
CAS
Article
PubMed
Google Scholar
Fecto F, Siddique T (2011) Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J Mol Neurosci 45:663–675. doi:10.1007/s12031-011-9637-9
Article
PubMed
CAS
Google Scholar
Feiguin F, Godena VK, Romano G, D’Ambrogio A, Klima R, Baralle FE (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583:1586–1592. doi:10.1016/j.febslet.2009.04.019
CAS
Article
PubMed
Google Scholar
Fiesel FC, Voigt A, Weber SS et al (2010) Knockdown of transactive response DNA-binding protein (TDP-43) downregulates histone deacetylase 6. EMBO J 29:209–221. doi:10.1038/emboj.2009.324
CAS
Article
PubMed
Google Scholar
Freeman SH, Spires-Jones T, Hyman BT, Growdon JH, Frosch MP (2008) TAR-DNA binding protein 43 in Pick disease. J Neuropathol Exp Neurol 67:62–67. doi:10.1097/nen.0b013e3181609361
CAS
Article
PubMed
Google Scholar
Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. J Proteome Res 9:1104–1120. doi:10.1021/pr901076y
CAS
Article
PubMed
Google Scholar
Fuentealba RA, Udan M, Bell S et al (2010) Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J Biol Chem 285:26304–26314. doi:10.1074/jbc.M110.125039
CAS
Article
PubMed
Google Scholar
Fujii R (2005) TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 118:5755–5765. doi:10.1242/jcs.02692
CAS
Article
PubMed
Google Scholar
Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N (2011) A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem 286:18664–18672. doi:10.1074/jbc.M111.231209
CAS
Article
PubMed
Google Scholar
Gertz B, Wong M, Martin LJ (2012) Nuclear localization of human SOD1 and mutant SOD1-specific disruption of survival motor neuron protein complex in transgenic amyotrophic lateral sclerosis mice. J Neuropathol Exp Neurol 71:162–177. doi:10.1097/NEN.0b013e318244b635
CAS
Article
PubMed
Google Scholar
Geser F, Prvulovic D, O’Dwyer L et al (2011) On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 95:649–662. doi:10.1016/j.pneurobio.2011.08.011
CAS
Article
PubMed
Google Scholar
Geser F, Robinson JL, Malunda JA et al (2010) Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch Neurol 67:1238–1250. doi:10.1001/archneurol.2010.254
Article
PubMed
Google Scholar
Gijselinck I, Van Langenhove T, van der Zee J et al (2012) A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65. doi:10.1016/S1474-4422(11)70261-7
CAS
Article
PubMed
Google Scholar
Giordana MT, Piccinini M, Grifoni S et al (2010) TDP-43 redistribution is an early event in sporadic amyotrophic lateral sclerosis. Brain Pathol 20:351–360. doi:10.1111/j.1750-3639.2009.00284.x
CAS
Article
PubMed
Google Scholar
Gleason CE, Ordureau A, Gourlay R, Arthur JSC, Cohen P (2011) Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon β. J Biol Chem 286:35663–35674. doi:10.1074/jbc.M111.267567
CAS
Article
PubMed
Google Scholar
Gregory JM, Barros TP, Meehan S, Dobson CM, Luheshi LM (2012) The aggregation and neurotoxicity of TDP-43 and its ALS-associated 25 kDa fragment are differentially affected by molecular chaperones in Drosophila. PLoS ONE 7:e31899. doi:10.1371/journal.pone.0031899.g005
CAS
Article
PubMed
Google Scholar
Groen EJN, van Es MA, van Vught PWJ et al (2010) FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch Neurol 67:224–230. doi:10.1001/archneurol.2009.329
Article
PubMed
Google Scholar
Guo W, Chen Y, Zhou X et al (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18:822–830. doi:10.1038/nsmb.2053
CAS
Article
PubMed
Google Scholar
Hanson KA, Kim SH, Wassarman DA, Tibbetts RS (2010) Ubiquilin modifies TDP-43 toxicity in a Drosophila model of amyotrophic lateral sclerosis (ALS). J Biol Chem 285:11068–11072. doi:10.1074/jbc.C109.078527
CAS
Article
PubMed
Google Scholar
Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nat Cell Biol 441:885–889. doi:10.1038/nature04724
CAS
Google Scholar
Hardiman O, van den Berg LH, Kiernan MC (2011) Clinical diagnosis and management of amyotrophic lateral sclerosis. Nat Rev Neurol 7:639–649. doi:10.1038/nrneurol.2011.153
CAS
Article
PubMed
Google Scholar
Hart MP, Gitler AD (2012) ALS-associated ataxin 2 polyQ expansions enhance stress-induced caspase 3 activation and increase TDP-43 pathological modifications. J Neurosci 32:9133–9142. doi:10.1523/JNEUROSCI.0996-12.2012
CAS
Article
PubMed
Google Scholar
Hasegawa M, Arai T, Nonaka T et al (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64:60–70. doi:10.1002/ana.21425
CAS
Article
PubMed
Google Scholar
Hernández I, Espinosa A, Real LM et al (2012) Molecular evaluation of human ubiquilin 2 gene PXX domain in familial frontotemporal dementia patients. J Neurol 259:2488–2490. doi:10.1007/s00415-012-6568-5
Article
PubMed
Google Scholar
Hewitt C, Kirby J, Highley JR et al (2010) Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 67:455–461. doi:10.1001/archneurol.2010.52
Article
PubMed
Google Scholar
Hicks GG, Singh N, Nashabi A et al (2000) FUS deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat Genet 24:175–179. doi:10.1038/72842
CAS
Article
PubMed
Google Scholar
Higashi S, Iseki E, Yamamoto R et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi:10.1016/j.brainres.2007.09.048
CAS
Article
PubMed
Google Scholar
Higashi S, Kabuta T, Nagai Y, Tsuchiya Y, Akiyama H, Wada K (2013) TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress. J Neurochem. doi:10.1111/jnc.12194
PubMed
Google Scholar
Hoell JI, Larsson E, Runge S et al (2011) RNA targets of wild-type and mutant FET family proteins. Nat Struct Mol Biol 18:1428–1431. doi:10.1038/nsmb.2163
CAS
Article
PubMed
Google Scholar
Hortobagyi T, Troakes C, Nishimura AL et al (2011) Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders. Acta Neuropathol 121:519–527. doi:10.1007/s00401-011-0813-3
CAS
Article
PubMed
Google Scholar
Huang C, Zhou H, Tong J et al (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet 7:e1002011. doi:10.1371/journal.pgen.1002011.g006
CAS
Article
PubMed
Google Scholar
Huang EJ, Zhang J, Geser F et al (2010) Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol 20:1069–1076. doi:10.1111/j.1750-3639.2010.00413.x
CAS
Article
PubMed
Google Scholar
Igaz LM, Kwong LK, Chen-Plotkin A et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284:8516–8524. doi:10.1074/jbc.M809462200
CAS
Article
PubMed
Google Scholar
Igaz LM, Kwong LK, Lee EB et al (2011) Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. J Clin Invest 121:726–738. doi:10.1172/JCI44867DS1
CAS
Article
PubMed
Google Scholar
Iida A, Hosono N, Sano M et al (2012) Novel deletion mutations of OPTN in amyotrophic lateral sclerosis in Japanese. Neurobiol Aging 33(1843):e1819–e1824. doi:10.1016/j.neurobiolaging.2011.12.037
Google Scholar
Inukai Y, Nonaka T, Arai T et al (2008) Abnormal phosphorylation of Ser409/410 of TDP-43 in FTLD-U and ALS. FEBS Lett 582:2899–2904. doi:10.1016/j.febslet.2008.07.027
CAS
Article
PubMed
Google Scholar
Ito H, Fujita K, Nakamura M et al (2011) Optineurin is co-localized with FUS in basophilic inclusions of ALS with FUS mutation and in basophilic inclusion body disease. Acta Neuropathol 121:555–557. doi:10.1007/s00401-011-0809-z
Article
PubMed
Google Scholar
Jinwal UK, Abisambra JF, Zhang J et al (2012) Cdc37/Hsp90 protein complex disruption triggers an autophagic clearance cascade for TDP-43 protein. J Biol Chem 287:24814–24820. doi:10.1074/jbc.M112.367268
CAS
Article
PubMed
Google Scholar
Johnson BS, McCaffery JM, Lindquist S, Gitler AD (2008) A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 105:6439–6444. doi:10.1073/pnas.0802082105
CAS
Article
PubMed
Google Scholar
Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284:20329–20339. doi:10.1074/jbc.M109.010264
CAS
Article
PubMed
Google Scholar
Johnson JO, Mandrioli J, Benatar M et al (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864. doi:10.1016/j.neuron.2010.11.036
CAS
Article
PubMed
Google Scholar
Ju S, Tardiff DF, Han H et al (2011) A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol 9:e1001052. doi:10.1371/journal.pbio.1001052
CAS
Article
PubMed
Google Scholar
Kabashi E, Bercier V, Lissouba A et al (2011) FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet 7:e1002214. doi:10.1371/journal.pgen.1002214.t001
CAS
Article
PubMed
Google Scholar
Kabashi E, Lin L, Tradewell ML et al (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19:671–683. doi:10.1093/hmg/ddp534
CAS
Article
PubMed
Google Scholar
Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574. doi:10.1038/ng.132
CAS
Article
PubMed
Google Scholar
Kariya S, Re DB, Jacquier A, Nelson K, Przedborski S, Monani UR (2012) Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum Mol Genet 21:3421–3434. doi:10.1093/hmg/dds174
CAS
Article
PubMed
Google Scholar
Kato M, Han TW, Xie S et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767. doi:10.1016/j.cell.2012.04.017
CAS
Article
PubMed
Google Scholar
Keller BA, Volkening K, Droppelmann CA, Ang L-C, Rademakers R, Strong MJ (2012) Co-aggregation of RNA binding proteins in ALS spinal motor neurons: evidence of a common pathogenic mechanism. Acta Neuropathol 124:733–747. doi:10.1007/s00401-012-1035-z
CAS
Article
PubMed
Google Scholar
Kiehl T-R, Nechiporuk A, Figueroa KP, Keating MT, Huynh DP, Pulst S-M (2006) Generation and characterization of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res Commun 339:17–24. doi:10.1016/j.bbrc.2005.10.186
CAS
Article
PubMed
Google Scholar
Kim HJ, Kim NC, Wang Y-D et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473. doi:10.1038/nature11922
CAS
Article
PubMed
Google Scholar
King A, Al-Sarraj S, Troakes C et al (2013) Mixed tau, TDP-43 and p62 pathology in FTLD associated with a C9ORF72 repeat expansion and p.Ala239Thr MAPT (tau) variant. Acta Neuropathol 125:303–310. doi:10.1007/s00401-012-1050-0
CAS
Article
PubMed
Google Scholar
King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80. doi:10.1016/j.brainres.2012.01.016
CAS
Article
PubMed
Google Scholar
Kino Y, Washizu C, Aquilanti E et al (2011) Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic Acids Res 39:2781–2798. doi:10.1093/nar/gkq1162
CAS
Article
PubMed
Google Scholar
Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. doi:10.1038/nature04723
CAS
Article
PubMed
Google Scholar
Korac J, Schaeffer V, Kovacevic I et al (2012) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci. doi:10.1242/jcs.114926
PubMed
Google Scholar
Kovacs GG, Murrell JR, Horvath S et al (2009) TARDBP variation associated with frontotemporal dementia, supranuclear gaze palsy, and chorea. Mov Disord 24:1843–1847. doi:10.1002/mds.22697
Article
PubMed
Google Scholar
Kraemer BC, Schuck T, Wheeler JM et al (2010) Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis. Acta Neuropathol 119:409–419. doi:10.1007/s00401-010-0659-0
CAS
Article
PubMed
Google Scholar
Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F (2012) A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol 86:1531–1547. doi:10.1111/mmi.12075
CAS
Article
PubMed
Google Scholar
Kulathu Y, Komander D (2012) Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 13:508–523. doi:10.1038/nrm3394
CAS
Article
PubMed
Google Scholar
Kuroda M, Sok J, Webb L et al (2000) Male sterility and enhanced radiation sensitivity in TLS(−/−) mice. EMBO J 19:453–462. doi:10.1093/emboj/19.3.453
CAS
Article
PubMed
Google Scholar
Kwiatkowski TJ Jr, Bosco DA, Leclerc AL et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. doi:10.1126/science.1166066
CAS
Article
PubMed
Google Scholar
Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64. doi:10.1093/hmg/ddq137
CAS
Article
PubMed
Google Scholar
Laird AS, Van Hoecke A, De Muynck L et al (2010) Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy. PLoS ONE 5:e13368. doi:10.1371/journal.pone.0013368.g005
Article
PubMed
CAS
Google Scholar
Lanson NA, Maltare A, King H et al (2011) A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum Mol Genet 20:2510–2523. doi:10.1093/hmg/ddr150
CAS
Article
PubMed
Google Scholar
Lastres-Becker I, Rub U, Auburger G (2008) Spinocerebellar ataxia 2 (SCA2). Cerebellum 7:115–124. doi:10.1007/s12311-008-0019-y
CAS
Article
PubMed
Google Scholar
Lee DY, Brown EJ (2012) Ubiquilins in the crosstalk among proteolytic pathways. Biol Chem 393:441–447. doi:10.1515/hsz-2012-0120
CAS
Article
PubMed
Google Scholar
Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ (2013) The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics 29:499–503. doi:10.1093/bioinformatics/bts725
CAS
Article
PubMed
Google Scholar
Li H-Y, Yeh P-A, Chiu H-C, Tang C-Y, Tu BP-H (2011) Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PLoS ONE 6:e23075. doi:10.1371/journal.pone.0023075.g009
CAS
Article
PubMed
Google Scholar
Li Y, Ray P, Rao EJ et al (2010) A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci USA 107:3169–3174. doi:10.1073/pnas.0913602107
CAS
Article
PubMed
Google Scholar
Li Z, Lu Y, Xu XL, Gao FB (2012) The FTD/ALS-associated RNA-binding protein TDP-43 regulates the robustness of neuronal specification through microRNA-9a in Drosophila. Hum Mol Genet 22:218–225. doi:10.1093/hmg/dds420
Article
PubMed
CAS
Google Scholar
Liachko NF, Guthrie CR, Kraemer BC (2010) Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 30:16208–16219. doi:10.1523/JNEUROSCI.2911-10.2010
CAS
Article
PubMed
Google Scholar
Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC (2013) CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol. doi:10.1002/ana.23870
PubMed
Google Scholar
Lin M-J, Cheng C-W, Shen CKJ (2011) Neuronal function and dysfunction of Drosophila dTDP. PLoS ONE 6:e20371. doi:10.1371/journal.pone.0020371
CAS
Article
PubMed
Google Scholar
Lin W-L, Dickson DW (2008) Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol 116:205–213. doi:10.1007/s00401-008-0408-9
CAS
Article
PubMed
Google Scholar
Ling S-C, Albuquerque CP, Han JS et al (2010) ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc Natl Acad Sci USA 107:13318–13323. doi:10.1073/pnas.1008227107
CAS
Article
PubMed
Google Scholar
Liu-Yesucevitz L, Bilgutay A, Zhang Y-J et al (2010) Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS ONE 5:e13250. doi:10.1371/journal.pone.0013250.t001
Article
PubMed
CAS
Google Scholar
Lu Y, Ferris J, Gao F-B (2009) Frontotemporal dementia and amyotrophic lateral sclerosis-associated disease protein TDP-43 promotes dendritic branching. Mol Brain 2:30. doi:10.1186/1756-6606-2-30
Article
PubMed
CAS
Google Scholar
Mackenzie IRA, Bigio EH, Ince PG et al (2007) Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann Neurol 61:427–434. doi:10.1002/ana.21147
CAS
Article
PubMed
Google Scholar
Majounie E, Abramzon Y, Renton AE et al (2012) Repeat expansion in C9ORF72 in Alzheimer’s disease. N Engl J Med 366:283–284. doi:10.1056/NEJMc1113592
CAS
Article
PubMed
Google Scholar
Maruyama H, Morino H, Ito H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226. doi:10.1038/nature08971
CAS
Article
PubMed
Google Scholar
McCann C, Holohan EE, Das S et al (2011) The ataxin-2 protein is required for microRNA function and synapse-specific long-term olfactory habituation. Proc Natl Acad Sci USA 108:E655–E662. doi:10.1073/pnas.1107198108
Article
PubMed
Google Scholar
McDonald KK, Aulas A, Destroismaisons L et al (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 20:1400–1410. doi:10.1093/hmg/ddr021
CAS
Article
PubMed
Google Scholar
Meyerowitz J, Parker SJ, Vella LJ et al (2011) C-Jun N-terminal kinase controls TDP-43 accumulation in stress granules induced by oxidative stress. Mol Neurodegener 6:57. doi:10.1186/1750-1326-6-57
CAS
Article
PubMed
Google Scholar
Miguel L, Avequin T, Delarue M et al (2012) Accumulation of insoluble forms of FUS protein correlates with toxicity in Drosophila. Neurobiol Aging 33(1008):e1001–e1015. doi:10.1016/j.neurobiolaging.2011.10.008
Google Scholar
Miguel L, Frébourg T, Campion D, Lecourtois M (2011) Both cytoplasmic and nuclear accumulations of the protein are neurotoxic in Drosophila models of TDP-43 proteinopathies. Neurobiol Dis 41:398–406. doi:10.1016/j.nbd.2010.10.007
CAS
Article
PubMed
Google Scholar
Millecamps S, Boillee S, Chabrol E et al (2011) Screening of OPTN in French familial amyotrophic lateral sclerosis. Neurobiol Aging 32(557):e511–e553. doi:10.1016/j.neurobiolaging.2010.11.005
Google Scholar
Mitchell JC, McGoldrick P, Vance C et al (2012) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125:273–288. doi:10.1007/s00401-012-1043-z
Article
PubMed
CAS
Google Scholar
Mori K, Lammich S, Mackenzie IRA et al (2013) hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413–423. doi:10.1007/s00401-013-1088-7
CAS
Article
PubMed
Google Scholar
Mori K, Weng SM, Arzberger T et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338. doi:10.1126/science.1232927
CAS
Article
PubMed
Google Scholar
Mosca L, Lunetta C, Tarlarini C et al (2012) Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson’s disease, and frontotemporal lobar degeneration, and in neurologically healthy subject. Neurobiol Aging 33(1846):e1841–e1844. doi:10.1016/j.neurobiolaging.2012.01.108
Google Scholar
Murakami T, Yang SP, Xie L et al (2011) ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Hum Mol Genet 21:1–9. doi:10.1093/hmg/ddr417
CAS
Article
PubMed
Google Scholar
Neumann M, Bentmann E, Dormann D et al (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain J Neurol 134:2595–2609. doi:10.1093/brain/awr201
Article
Google Scholar
Neumann M, Kwong LK, Sampathu DM, Trojanowski JQ, Lee VM (2007) TDP-43 proteinopathy in frontotemporal lobar degeneration and amyotrophic lateral sclerosis: protein misfolding diseases without amyloidosis. Arch Neurol 64:1388–1394. doi:10.1001/archneur.64.10.1388
Article
PubMed
Google Scholar
Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IRA (2009) A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain J Neurol 132:2922–2931. doi:10.1093/brain/awp214
Article
Google Scholar
Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133. doi:10.1126/science.1134108
CAS
Article
PubMed
Google Scholar
Neumann M, Valori CF, Ansorge O et al (2012) Transportin 1 accumulates specifically with FET proteins but no other transportin cargos in FTLD-FUS and is absent in FUS inclusions in ALS with FUS mutations. Acta Neuropathol 124:705–716. doi:10.1007/s00401-012-1020-6
CAS
Article
PubMed
Google Scholar
Nihei Y, Ito D, Suzuki N (2012) Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS). J Biol Chem 287:41310–41323. doi:10.1074/jbc.M112.398099
CAS
Article
PubMed
Google Scholar
Nishimoto Y, Ito D, Yagi T, Nihei Y, Tsunoda Y, Suzuki N (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem 285:608–619. doi:10.1074/jbc.M109.022012
CAS
Article
PubMed
Google Scholar
Nishimura AL, Mitne-Neto M, Silva HCA et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831. doi:10.1086/425287
CAS
Article
PubMed
Google Scholar
Nonaka T, Arai T, Buratti E, Baralle FE, Akiyama H, Hasegawa M (2009) Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett 583:394–400. doi:10.1016/j.febslet.2008.12.031
CAS
Article
PubMed
Google Scholar
Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M (2009) Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 18:3353–3364. doi:10.1093/hmg/ddp275
CAS
Article
PubMed
Google Scholar
Nonhoff U, Ralser M, Welzel F et al (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 18:1385–1396. doi:10.1091/mbc.E06-12-1120
CAS
Article
PubMed
Google Scholar
Okamoto K, Mizuno Y, Fujita Y (2008) Bunina bodies in amyotrophic lateral sclerosis. Neuropathology 28:109–115. doi:10.1111/j.1440-1789.2007.00873.x
Article
PubMed
Google Scholar
Osawa T, Mizuno Y, Fujita Y, Takatama M, Nakazato Y, Okamoto K (2011) Optineurin in neurodegenerative diseases. Neuropathology 31:569–574. doi:10.1111/j.1440-1789.2011.01199.x
Article
PubMed
Google Scholar
Parker SJ, Meyerowitz J, James JL et al (2012) Endogenous TDP-43 localized to stress granules can subsequently form protein aggregates. Neurochem Int 60:415–424. doi:10.1016/j.neuint.2012.01.019
CAS
Article
PubMed
Google Scholar
Parkinson N, Ince PG, Smith MO et al (2006) ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67:1074–1077. doi:10.1212/01.wnl.0000231510.89311.8b
CAS
Article
PubMed
Google Scholar
Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147:498–508. doi:10.1016/j.cell.2011.10.011
CAS
Article
PubMed
Google Scholar
Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci 14:459–468. doi:10.1038/nn.2779
CAS
Article
PubMed
Google Scholar
Renton AE, Majounie E, Waite A et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268. doi:10.1016/j.neuron.2011.09.010
CAS
Article
PubMed
Google Scholar
Ritson GP, Custer SK, Freibaum BD et al (2010) TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci 30:7729–7739. doi:10.1523/JNEUROSCI.5894-09.2010
CAS
Article
PubMed
Google Scholar
Robinson JL, Geser F, Stieber A et al (2013) TDP-43 skeins show properties of amyloid in a subset of ALS cases. Acta Neuropathol 125:121–131. doi:10.1007/s00401-012-1055-8
CAS
Article
PubMed
Google Scholar
Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62. doi:10.1038/362059a0
CAS
Article
PubMed
Google Scholar
Rutherford NJ, Zhang Y-J, Baker M et al (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4:e1000193. doi:10.1371/journal.pgen.1000193
Article
PubMed
CAS
Google Scholar
Sahlender DA, Roberts RC, Arden SD et al (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169:285–295. doi:10.1083/jcb.200501162
CAS
Article
PubMed
Google Scholar
Sasayama H, Shimamura M, Tokuda T et al (2012) Knockdown of the Drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches. PLoS ONE 7:e39483. doi:10.1371/journal.pone.0039483.t001
CAS
Article
PubMed
Google Scholar
Satterfield TF (2006) Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 15:2523–2532. doi:10.1093/hmg/ddl173
CAS
Article
PubMed
Google Scholar
Sephton CF, Good SK, Atkin S et al (2010) TDP-43 is a developmentally regulated protein essential for early embryonic development. J Biol Chem 285:6826–6834. doi:10.1074/jbc.M109.061846
CAS
Article
PubMed
Google Scholar
Shan X, Chiang P-M, Price DL, Wong PC (2010) Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci USA 107:16325–16330. doi:10.1073/pnas.1003459107
CAS
Article
PubMed
Google Scholar
Shen X, Ying H, Qiu Y et al (2011) Processing of optineurin in neuronal cells. J Biol Chem 286:3618–3629. doi:10.1074/jbc.M110.175810
CAS
Article
PubMed
Google Scholar
Simon-Sanchez J, Dopper EGP, Cohn-Hokke PE et al (2012) The clinical and pathological phenotype of C9ORF72 hexanucleotide repeat expansions. Brain J Neurol 135:723–735. doi:10.1093/brain/awr353
Article
Google Scholar
Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672. doi:10.1126/science.1154584
CAS
Article
PubMed
Google Scholar
Stallings NR, Puttaparthi K, Luther CM, Burns DK, Elliott JL (2010) Progressive motor weakness in transgenic mice expressing human TDP-43. Neurobiol Dis 40:404–414. doi:10.1016/j.nbd.2010.06.017
CAS
Article
PubMed
Google Scholar
Sun Y, Yang P, Zhang Y et al (2011) A genome-wide RNAi screen identifies genes regulating the formation of P bodies in C. elegans and their functions in NMD and RNAi. Protein Cell 2:918–939. doi:10.1007/s13238-011-1119-x
CAS
Article
PubMed
Google Scholar
Sun Z, Diaz Z, Fang X et al (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9:e1000614. doi:10.1371/journal.pbio.1000614.t002
CAS
Article
PubMed
Google Scholar
Swarup V, Phaneuf D, Bareil C et al (2011) Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments. Brain J Neurol 134:2610–2626. doi:10.1093/brain/awr159
Article
Google Scholar
Tan C-F, Eguchi H, Tagawa A et al (2007) TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol 113:535–542. doi:10.1007/s00401-007-0206-9
CAS
Article
PubMed
Google Scholar
Tanji K, Zhang H-X, Mori F, Kakita A, Takahashi H, Wakabayashi K (2012) p62/sequestosome 1 binds to TDP-43 in brains with frontotemporal lobar degeneration with TDP-43 inclusions. J Neurosci Res 90:2034–2042. doi:10.1002/jnr.23081
CAS
Article
PubMed
Google Scholar
Tashiro Y, Urushitani M, Inoue H et al (2012) Motor neuron-specific disruption of proteasomes, but not autophagy, replicates amyotrophic lateral sclerosis. J Biol Chem 287:42984–42994. doi:10.1074/jbc.M112.417600
CAS
Article
PubMed
Google Scholar
Teyssou E, Takeda T, Lebon V et al (2013) Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol 125:511–522. doi:10.1007/s00401-013-1090-0
CAS
Article
PubMed
Google Scholar
Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458. doi:10.1038/nn.2778
CAS
Article
PubMed
Google Scholar
Tradewell ML, Yu Z, Tibshirani M, Boulanger MC, Durham HD, Richard S (2011) Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 21:136–149. doi:10.1093/hmg/ddr448
CAS
Article
PubMed
Google Scholar
Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673. doi:10.1084/jem.20092164
CAS
Article
PubMed
Google Scholar
Tsuiji H, Iguchi Y, Furuya A et al (2013) Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 5:221–234. doi:10.1002/emmm.201202303
CAS
Article
PubMed
Google Scholar
Tsuji H, Arai T, Kametani F et al (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain J Neurol 135:3380–3391. doi:10.1093/brain/aws230
Article
Google Scholar
Vaccaro A, Tauffenberger A, Aggad D, Rouleau G, Drapeau P, Parker JA (2012) Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS ONE 7:e31321. doi:10.1371/journal.pone.0031321.g010
CAS
Article
PubMed
Google Scholar
van Blitterswijk M, van Vught PW, van Es MA et al (2012) Novel optineurin mutations in sporadic amyotrophic lateral sclerosis patients. Neurobiol Aging 33(1016):e1011–e1017. doi:10.1016/j.neurobiolaging.2011.05.019
Google Scholar
Van Deerlin VM, Leverenz JB, Bekris LM et al (2008) TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol 7:409–416. doi:10.1016/S1474-4422(08)70071-1
Article
PubMed
CAS
Google Scholar
van der Zee J, Gijselinck I, Dillen L et al (2013) A pan-European Study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 34:363–373. doi:10.1002/humu.22244
Article
PubMed
CAS
Google Scholar
van Eersel J, Ke YD, Gladbach A et al (2011) Cytoplasmic accumulation and aggregation of TDP-43 upon proteasome inhibition in cultured neurons. PLoS ONE 6:e22850. doi:10.1371/journal.pone.0022850.g006
Article
PubMed
CAS
Google Scholar
Van Langenhove T, van der Zee J, Sleegers K et al (2010) Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74:366–371. doi:10.1212/WNL.0b013e3181ccc732
Article
PubMed
Google Scholar
Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211. doi:10.1126/science.1165942
CAS
Article
PubMed
Google Scholar
Vance C, Scotter EL, Nishimura AL et al (2013) ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet. doi:10.1093/hmg/ddt117
PubMed
Google Scholar
Verbeeck C, Deng Q, DeJesus-Hernandez M et al (2012) Expression of fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol Neurodegener 7:53. doi:10.1186/1750-1326-7-53
CAS
Article
PubMed
Google Scholar
Voigt A, Herholz D, Fiesel FC et al (2010) TDP-43-mediated neuron loss in vivo requires RNA-binding activity. PLoS ONE 5:e12247. doi:10.1371/journal.pone.0012247.t002
Article
PubMed
CAS
Google Scholar
Volkening K, Leystra-Lantz C, Yang W, Jaffee H, Strong MJ (2009) Tar DNA binding protein of 43 kDa (TDP-43), 14–3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Brain Res 1305:168–182. doi:10.1016/j.brainres.2009.09.105
CAS
Article
PubMed
Google Scholar
Wang I-F, Guo B-S, Liu Y-C et al (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci USA 109:15024–15029. doi:10.1073/pnas.1206362109
CAS
Article
PubMed
Google Scholar
Wang IF, Wu L-S, Chang H-Y, Shen CKJ (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 105:797–806. doi:10.1111/j.1471-4159.2007.05190.x
CAS
Article
PubMed
Google Scholar
Wang J-W, Brent JR, Tomlinson A, Shneider NA, McCabe BD (2011) The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J Clin Invest 121:4118–4126. doi:10.1172/JCI57883DS1
CAS
Article
PubMed
Google Scholar
Watanabe M, Dykes-Hoberg M, Cizewski Culotta V, Price DL, Wong PC, Rothstein JD (2001) Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol Dis 8:933–941. doi:10.1006/nbdi.2001.0443
CAS
Article
PubMed
Google Scholar
Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106:18809–18814. doi:10.1073/pnas.0908767106
CAS
Article
PubMed
Google Scholar
Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233. doi:10.1126/science.1205405
CAS
Article
PubMed
Google Scholar
Williams KL, Warraich ST, Yang S et al (2012) UBQLN2/ubiquilin 2 mutation and pathology in familial amyotrophic lateral sclerosis. Neurobiol Aging 33:2527 e2523-2510. doi:10.1016/j.neurobiolaging.2012.05.008
Google Scholar
Wils H, Kleinberger G, Janssens J et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3858–3863. doi:10.1073/pnas.0912417107
CAS
Article
PubMed
Google Scholar
Wojtas A, Heggeli KA, Finch N et al (2012) C9ORF72 repeat expansions and other FTD gene mutations in a clinical AD patient series from Mayo Clinic. Am J Neurodegener Dis 1:107–118
PubMed
Google Scholar
Wu LS, Cheng WC, Hou SC, Yan YT, Jiang ST, Shen CK (2010) TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 48:56–62. doi:10.1002/dvg.20584
CAS
PubMed
Google Scholar
Xia R, Liu Y, Yang L, Gal J, Zhu H, Jia J (2012) Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of FUS-mediated ALS. Mol Neurodegener 7:10. doi:10.1186/1750-1326-7-10
CAS
Article
PubMed
Google Scholar
Xu Y-F, Zhang Y-J, Lin W-L et al (2011) Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice. Mol Neurodegener 6:73. doi:10.1186/1750-1326-6-73
CAS
Article
PubMed
Google Scholar
Xu YF, Gendron TF, Zhang YJ et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30:10851–10859. doi:10.1523/JNEUROSCI.1630-10.2010
CAS
Article
PubMed
Google Scholar
Yamazaki T, Chen S, Yu Y et al (2012) FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep 2:799–806. doi:10.1016/j.celrep.2012.08.025
CAS
Article
PubMed
Google Scholar
Yang C, Tan W, Whittle C et al (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS ONE 5:e15878. doi:10.1371/journal.pone.0015878.t001
CAS
Article
PubMed
Google Scholar
Yu Z, Zhu Y, Chen-Plotkin AS et al (2011) PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats. PLoS ONE 6:e17951. doi:10.1371/journal.pone.0017951.t002
CAS
Article
PubMed
Google Scholar
Zhang D, Iyer LM, He F, Aravind L (2012) Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet 3:283. doi:10.3389/fgene.2012.00283
PubMed
Google Scholar
Zhang T, Hwang H-Y, Hao H, Talbot C, Wang J (2012) Caenorhabditis elegans RNA-processing protein TDP-1 regulates protein homeostasis and life span. J Biol Chem 287:8371–8382. doi:10.1074/jbc.M111.311977
CAS
Article
PubMed
Google Scholar
Zhang T, Mullane PC, Periz G, Wang J (2011) TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Hum Mol Genet 20:1952–1965. doi:10.1093/hmg/ddr076
CAS
Article
PubMed
Google Scholar
Zhang Y-J, Gendron TF, Xu Y-F, Ko L-W, Yen S-H, Petrucelli L (2010) Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener 5:33. doi:10.1186/1750-1326-5-33
Article
PubMed
CAS
Google Scholar
Zhang Y-J, Xu Y-F, Cook C et al (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc Natl Acad Sci USA 106:7607–7612. doi:10.1073/pnas.0900688106
CAS
Article
PubMed
Google Scholar
Zhou H, Huang C, Chen H et al (2010) Transgenic rat model of neurodegeneration caused by mutation in the TDP gene. PLoS Genet 6:e1000887. doi:10.1371/journal.pgen.1000887.g008
Article
PubMed
CAS
Google Scholar
Zhu G, Wu C-J, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFα- induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443. doi:10.1016/j.cub.2007.07.041
CAS
Article
PubMed
Google Scholar
Zinszner H, Sok J, Immanuel D, Yin Y, Ron D (1997) TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J Cell Sci 110(Pt 15):1741–1750
CAS
PubMed
Google Scholar