Skip to main content

Advertisement

Log in

Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Optineurin (OPTN) is a multifunctional protein involved in vesicular trafficking, signal transduction and gene expression. OPTN mutations were described in eight Japanese patients with familial and sporadic amyotrophic lateral sclerosis (FALS, SALS). OPTN-positive inclusions co-localising with TDP-43 were described in SALS and in FALS with SOD-1 mutations, potentially linking two pathologically distinct pathways of motor neuron degeneration. We have explored the abundance of OPTN inclusions using a range of antibodies in postmortem tissues from 138 cases and controls including sporadic and familial ALS, frontotemporal lobar degeneration (FTLD) and a wide range of neurodegenerative proteinopathies. OPTN-positive inclusions were uncommon and detected in only 11/32 (34%) of TDP-43-positive SALS spinal cord and 5/15 (33%) of FTLD-TDP. Western blot of lysates from FTLD-TDP frontal cortex and TDP-43-positive SALS spinal cord revealed decreased levels of OPTN protein compared to controls (p < 0.05), however, this correlated with decreased neuronal numbers in the brain. Large OPTN inclusions were not detected in FALS with SOD-1 and FUS mutation, respectively, or in FTLD-FUS cases. OPTN-positive inclusions were identified in a few Alzheimer’s disease (AD) cases but did not co-localise with tau and TDP-43. Occasional striatal neurons contained granular cytoplasmic OPTN immunopositivity in Huntington’s disease (HD) but were absent in spinocerebellar ataxia type 3. No OPTN inclusions were detected in FTLD-tau and α-synucleinopathy. We conclude that OPTN inclusions are relatively rare and largely restricted to a minority of TDP-43 positive ALS and FTLD-TDP cases. Our results do not support the proposition that OPTN inclusions play a central role in the pathogenesis of ALS, FTLD or any other neurodegenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albagha OM, Visconti MR, Alonso N et al (2010) Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone. Nat Genet 42:520–524

    Article  PubMed  CAS  Google Scholar 

  2. Anborgh PH, Godin C, Pampillo M et al (2005) Inhibition of metabotropic glutamate receptor signaling by the huntingtin-binding protein optineurin. J Biol Chem 280:34840–34848

    Article  PubMed  CAS  Google Scholar 

  3. Brooks BR, Miller RG, Swash M et al (2000) El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299

    Article  PubMed  CAS  Google Scholar 

  4. Cairns NJ, Bigio EH, Mackenzie IR et al (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol 114:5–22

    Article  PubMed  Google Scholar 

  5. Chung PY, Beyens G, Boonen S et al (2010) The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum Genet 128:615–626

    Article  PubMed  Google Scholar 

  6. De Marco N, Buono M, Troise F et al (2006) Optineurin increases cell survival and translocates to the nucleus in a Rab8-dependent manner upon an apoptotic stimulus. J Biol Chem 281:16147–16156

    Article  PubMed  Google Scholar 

  7. del Toro D, Alberch J, Lazaro-Dieguez F et al (2009) Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell 20:1478–1492

    Article  PubMed  CAS  Google Scholar 

  8. Greenway MJ, Andersen PM, Russ C et al (2006) ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat Genet 38:411–413

    Article  PubMed  CAS  Google Scholar 

  9. Hattula K, Peranen J (2000) FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr Biol 10:1603–1606

    Article  PubMed  CAS  Google Scholar 

  10. Huber LA, Pimplikar S, Parton RG et al (1993) Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123:35–45

    Article  PubMed  CAS  Google Scholar 

  11. Hynd MR, Lewohl JM, Scott HL et al (2003) Biochemical and molecular studies using human autopsy brain tissue. J Neurochem 85:543–562

    Article  PubMed  CAS  Google Scholar 

  12. Kroeber M, Ohlmann A, Russell P et al (2006) Transgenic studies on the role of optineurin in the mouse eye. Exp Eye Res 82:1075–1085

    Article  PubMed  CAS  Google Scholar 

  13. Li Y, Kang J, Horwitz MS (1998) Interaction of an adenovirus E3 14.7-kilodalton protein with a novel tumor necrosis factor alpha-inducible cellular protein containing leucine zipper domains. Mol Cell Biol 18:1601–1610

    PubMed  CAS  Google Scholar 

  14. Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4

    Article  PubMed  Google Scholar 

  15. Maekawa S, Leigh PN, King A et al (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29:672–683

    Article  PubMed  Google Scholar 

  16. Maruyama H, Morino H, Ito H et al (2010) Mutations of optineurin in amyotrophic lateral sclerosis. Nature 465:223–226

    Article  PubMed  CAS  Google Scholar 

  17. Moreau C, Devos D, Brunaud-Danel V et al (2005) Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65:1958–1960

    Article  PubMed  CAS  Google Scholar 

  18. Moreland RJ, Dresser ME, Rodgers JS et al (2000) Identification of a transcription factor IIIA-interacting protein. Nucleic Acids Res 28:1986–1993

    Article  PubMed  CAS  Google Scholar 

  19. Nishimura AL, Mitne-Neto M, Silva HC et al (2004) A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 75:822–831

    Article  PubMed  CAS  Google Scholar 

  20. Park B, Ying H, Shen X et al (2010) Impairment of protein trafficking upon overexpression and mutation of optineurin. PLoS One 5:e11547

    Article  PubMed  Google Scholar 

  21. Rezaie T, Child A, Hitchings R et al (2002) Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 295:1077–1079

    Article  PubMed  CAS  Google Scholar 

  22. Rezaie T, Waitzman DM, Seeman JL et al (2005) Molecular cloning and expression profiling of optineurin in the rhesus monkey. Invest Ophthalmol Vis Sci 46:2404–2410

    Article  PubMed  Google Scholar 

  23. Rollinson S, Bennion J, Toulson G et al. Analysis of optineurin in frontotemporal lobar degeneration. Neurobiol Aging. doi:S0197-4580(0110)00425-00422

  24. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  25. Sahlender DA, Roberts RC, Arden SD et al (2005) Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol 169:285–295

    Article  PubMed  CAS  Google Scholar 

  26. Shaw CE, Enayat ZE, Powell JF et al (1997) Familial amyotrophic lateral sclerosis. Molecular pathology of a patient with a SOD1 mutation. Neurology 49:1612–1616

    PubMed  CAS  Google Scholar 

  27. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  28. Sudhakar C, Nagabhushana A, Jain N et al (2009) NF-kappaB mediates tumor necrosis factor alpha-induced expression of optineurin, a negative regulator of NF-kappaB. PLoS One 4:e5114

    Article  PubMed  Google Scholar 

  29. Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421

    Article  PubMed  CAS  Google Scholar 

  30. Vance C, Rogelj B, Hortobagyi T et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  PubMed  CAS  Google Scholar 

  31. Velier J, Kim M, Schwarz C et al (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp Neurol 152:34–40

    Article  PubMed  CAS  Google Scholar 

  32. Ying H, Shen X, Park B et al (2010) Posttranslational modifications, localization, and protein interactions of optineurin, the product of a glaucoma gene. PLoS One 5:e9168

    Article  PubMed  Google Scholar 

  33. Zhu G, Wu CJ, Zhao Y et al (2007) Optineurin negatively regulates TNFalpha- induced NF-kappaB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in the UK by grants from Motor Neurone Disease Association UK; Medical Research Council UK; Wellcome Trust UK; The Psychiatry Research Trust of the Institute of Psychiatry; National Institute for Health Research Biomedical Research Centre for Mental Health at the South London and Maudsley National Health Service Foundation Trust and Institute of Psychiatry, King’s College London. The authors declare that they have no conflict of interest. The postmortem tissues were provided by the MRC London Neurodegenerative Diseases Brain Bank at the Institute of Psychiatry, King’s College London. We are thankful for the patients and their families who contributed to this research by giving consent for tissue donation for diagnosis and research. Technical assistance was provided by Christopher Bell, Vasiliki Spandoni, Olar Adeyi, Rita Monori and Marinela Vavla. We thank Emma Daniel and Hazel Urwin for helpful discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Hortobágyi.

Additional information

T. Hortobágyi, C. Troakes and A. L. Nishimura contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hortobágyi, T., Troakes, C., Nishimura, A.L. et al. Optineurin inclusions occur in a minority of TDP-43 positive ALS and FTLD-TDP cases and are rarely observed in other neurodegenerative disorders. Acta Neuropathol 121, 519–527 (2011). https://doi.org/10.1007/s00401-011-0813-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0813-3

Keywords

Navigation