Skip to main content
Log in

Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Resistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes. Our efforts have focused on the generation of transformed hairy-roots and composite plants appropriate for nematode infection assays. An efficient and reliable method using the A4R strain of Agrobacterium rhizogenes for the transformation of Prunus roots with an Egfp reporter gene is given. The rooting efficiency, depending on the genotypes, was maximal for the interspecific hybrid 253 (Myrobalan plum × almond-peach), susceptible to RKN, that was retained for subsequent studies. From the agro-inoculated cuttings, 72% produced roots, mainly at the basal section of the stem. Transformed roots were screened by microscope detection of Egfp fluorescence and molecular analyses of the integration of the transgene. The absence of residual agrobacteria in the plants was checked by the non-amplification of the chromosomal gene chvH. Egfp was expressed visually in 76% of the rooted plants. Isolated hairy roots in Petri dishes and composite plants (transformed roots and non-transformed aerial part) in soil containers were inoculated with the RKN Meloidogyne incognita. In both cases, root transformation did not affect the ability of the nematodes to develop in the root tissues. Our results showed that isolated hairy-roots can be used to validate candidate genes and the conditions in which composite plants offer a complementary system for studying the function of root genes in physiological conditions of whole plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls AC, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    Article  PubMed  CAS  Google Scholar 

  • Alvarez R, Alonso P, Cortizo M, Celestino C, Hernandez I, Toribio M, Ordas RJ (2004) Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23:218–223

    Article  PubMed  CAS  Google Scholar 

  • Ayadi R, Trémouillaux-Guiller J (2003) Root formation from transgenic calli of Ginkgo biloba. Tree Physiol 23:713–718

    PubMed  Google Scholar 

  • Blanc G, Baptiste C, Oliver G, Martin F, Montoro P (2006) Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Müll Arg. Plants. Plant Cell Rep 24:724–733

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HF, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Chavez-Vela NA, Chavez-Ortiz LI, Perez-Molphe Balch E (2003) Genetic transformation of sour orange using Agrobacterium rhizogenes. Agrociencia 37:629–639

    Google Scholar 

  • Cho HJ, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy-roots and propagation of the soybean cyst nematode. Planta 210:195–204

    Article  PubMed  CAS  Google Scholar 

  • Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004a) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    Article  PubMed  CAS  Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls AC, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004b) High-resolution mapping and chromosome landing at the root-knot nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–1327

    Article  PubMed  CAS  Google Scholar 

  • Cook R, Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, Marrickville, pp 179–231

    Google Scholar 

  • Corredoira E, Montenegro D, San-José MJ, Vieitez AM, Ballester A (2004) Agrobacterium-mediated transformation of European chestnut embryogenic cultures. Plant Cell Rep 23:311–318

    Article  PubMed  CAS  Google Scholar 

  • Cseke LJ, Cseke SB, Podila GK (2007) High efficiency poplar transformation. Plant Cell Rep 26:1529–1538

    Article  PubMed  CAS  Google Scholar 

  • Damiano C, Archilletti T, Caboni E, Lauri P, Falasca G, Mariotti D, Ferraiolo G (1995) Agrobacterium mediated transformation of almond: in vitro rooting through localized infection of A rhizogenes W. T. Acta Hort 392:161–169

    CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin R, Poizat C, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid—location of root-knot nematode resistance gene. Theor Appl Genet 109:827–838

    Article  PubMed  CAS  Google Scholar 

  • Druart P, Delporte F, Brazda M, Ugarte-Ballon C, Laimer da Câmara Machado A, Laimer da Câmara Machado M, Jacquemin J, Watillon B et al (1998) Genetic transformation of cherry tree. Acta Hort 468:71–76

    Google Scholar 

  • Esmenjaud D, Dirlewanger E (2007) Plum. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 4 (fruits and nuts). Springer, Heidelberg, pp 121–137

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter- and intra-specific resistance variability in Myrobalan plum, peach and peach-almond rootstock using 22 root-knot nematode populations. J Am Soc Hort Sci 119:94–100

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Bonnet A, Salesses G (1996) Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theor Appl Genet 92:873–879

    Article  Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Simard MH, Salesses G (1997) Differential response to root-knot nematodes in Prunus species and correlative genetic implications. J Nematol 29:370–380

    PubMed  CAS  Google Scholar 

  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294

    Article  PubMed  CAS  Google Scholar 

  • Gartland JS, McHugh AT, Brasier CM, Irvine RJ, Fenning TM, Gartland KMA (2000) Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with Agrobacterium tumefaciens binary vector. Tree Physiol 20:901–907

    PubMed  CAS  Google Scholar 

  • Grant JE, Dommisse EM, Conner AJ (1991) Gene transfer to plants using Agrobacterium. In: Murray DR (ed) Advanced methods in plant breeding and biotechnology. CAB international, Wallingford, pp 50–73

    Google Scholar 

  • Gutierrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    Article  CAS  Google Scholar 

  • Haapala T, Santini L, Mariotti D (1994) Agrobacterium-mediated transformation in trees: preliminary studies on the transfer of rol genes into some north European woody species. Adv Hort Sci 8:25–28

    Google Scholar 

  • Haggman HM, Aronen TS (2000) Agrobacterium rhizogenes for rooting recalcitrant woody plants. In: Jain SM, Minocha SC (eds) Molecular biology of woody plants, vol 2. Kluwer Academic Publishers, The Netherlands, pp 47–78

    Google Scholar 

  • Haseloff J, Siemering KR (1998) The use of GFP in plants. In: Chalfie M, Kain SR (eds) Green fluorescence protein: properties applications and protocols. Wiley, Chichester, pp 191–220

    Google Scholar 

  • Hooykaas PJJ (1989) Transformation of plant cells via Agrobacterium. Plant Mol Biol 13:327–336

    Article  PubMed  CAS  Google Scholar 

  • Jouanin L, Tourneur J, Casse-Delbart F (1986) Restriction maps and homologies of the three plasmids of Agrobacterium rhizogenes strain A4. Plasmid 16:124–134

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Meyer D, Hilson P (2005) Modular cloning and expression of tagged fluorescent protein in plant cells. Trends Plant Sci 10(3):103–105

    Article  PubMed  CAS  Google Scholar 

  • Kifle S, Shao M, Jung C, Cai D (1999) An improved transformation protocol for studying gene expression in hairy-roots of sugar beet (Beta vulgaris L.). Plant Cell Rep 18:514–519

    Article  CAS  Google Scholar 

  • Lamberti F (1979) Economic importance of Meloidogyne spp subtropical, mediterranean climates. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne species): systematics biology and control. Academic Press, New York, pp 342–357

    Google Scholar 

  • Layne REC (1987) Peach rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. John Wiley, New York, pp 185–216

    Google Scholar 

  • Lecouls AC, Salesses G, Minot JC, Voisin R, Bonnet A, Esmenjaud D (1997) Spectrum of the Ma genes for resistance to Meloidogyne spp. in Myrobalan plum. Theor Appl Genet 85:1325–2334

    Article  Google Scholar 

  • Lecouls AC, Bergougnoux V, Rubio-Cabetas MJ, Bosselut N, Voisin R, Poessel JL, Faurobert M, Bonnet A, Salesses G, Dirlewanger E, Esmenjaud D (2004) Marker-assisted selection for the wide-spectrum resistance to the root-knot nematodes conferred by the Ma gene from Myrobalan plum (Prunus cerasifera) in interspecific Prunus material. Mol Breed 13:113–124

    Article  CAS  Google Scholar 

  • Mante S, Morgens Scorza R, Cordts JM, Callahan AM (1991) Agrobacterium-mediated transformation of plum (Prunus domestica L.) hypocotyl slices and regeneration of transgenic plants. Biotechnology 9:853–857

    Article  CAS  Google Scholar 

  • Matsuda N, Gao M, Isuzugawa K, Takashina T, Nishimura K (2005) Development of an Agrobacterium-mediated transformation method for pear (Pyrus communis L.) with leaf-section and axillary shoot-meristem explants. Plant Cell Rep 24:45–51

    Article  PubMed  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Mondal TK, Bhattacharya A, Ahuja PS, Chand PK (2001) Transgenic tea (Camellia sinensis (L.) O. Kuntze cv. Kangra Jat) plants obtained by Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 20:712–720

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nyczepir AP (1991) Nematode management strategies in stone fruits in the United States. J Nematol 23:334–341

    PubMed  CAS  Google Scholar 

  • Nyczepir AP, Halbrendt JM (1993) Nematode pests of deciduous fruit and nut trees. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB international, Oxon (UK), pp 381–425

    Google Scholar 

  • Padilla I, Webb K, Scorza R (2003) Early antibiotic selection and efficient rooting and acclimatization improved the production of transgenic plum plants (Prunus domestica L.). Plant Cell Rep 22:38–45

    Article  Google Scholar 

  • Perez-Clemente R, Perez-Sanjuan A, Garcia-Ferriz L, Beltran J, Canas L (2004) Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using green fluorescence protein (GFP) as an in vivo marker. Mol Breed 14:419–427

    Article  CAS  Google Scholar 

  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res 14:15–26

    Article  PubMed  CAS  Google Scholar 

  • Petri C, Scorza R (2010) Factors affecting adventitious regeneration from in vitro leaf explants of ‘Improved French’ plum, the most important dried plum cultivar in the USA. Ann Appl Biol 156:79–89

    Article  CAS  Google Scholar 

  • Petri C, Wang H, Alburquerque N, Faize M, Burgos L (2008a) Agrobacterium-mediated transformation of apricot (Prunus armeniaca L.) leaf explants. Plant Cell Rep 27(8):1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Petri C, Webb K, Hily JM, Dardick C, Scorza R (2008b) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breed 22:581–591

    Article  CAS  Google Scholar 

  • Pridmore RD (1987) New and versatile cloning vectors with kanamycin-resistance marker. Gene 56:309–312

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828

    Article  PubMed  CAS  Google Scholar 

  • Ravelonandro M, Scorza R, Callahan A, Levy L, Jacquet C, Monsion M, Dansteegt V (2000) The use of transgenic fruit trees as a resistance strategy for virus epidemics: the plum pox (sharka) model. Virus Res 71:63–69

    Article  PubMed  CAS  Google Scholar 

  • Rehder A (1954) Manuals of cultivated trees and shrubs, 3rd edn. Dioscorides Press, Portland (Oregon)

    Google Scholar 

  • Rubio-Cabetas MJ, Minot JC, Voisin R, Esmenjaud D, Salesses G, Bonnet A (1999) Response of the Ma genes from Myrobalan plum to Meloidogyne hapla and M. mayaguensis. Hortscience 34:1266–1268

    Google Scholar 

  • Rugini E, Mariotti D (1991) Agrobacterium rhizogenes T-DNA genes and rooting in woody species. Acta Hort 300:301–307

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory edition, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York

    Google Scholar 

  • Sasser JN (1977) Woldwide dissemination and importance of the root-knot nematode, Meloidogyne spp. J Nematol 22:585–589

    Google Scholar 

  • Shaw CH, Carter GH, Watson MD, Shaw CH (1984) A functional map of the nopaline synthase promoter. Nucleic Acids Res 12:7831–7846

    Article  PubMed  CAS  Google Scholar 

  • Sijmons PC, Grundler FMW, von Mende N, Burrows PR, Wyss U (1991) Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J 1:245–254

    Article  Google Scholar 

  • Song GQ, Sink KC (2006) Transformation of Montmorency sour cherry (Prunus cerasus L.) and Gisela 6 (P. cerasus x P. canescens) cherry rootstock mediated by Agrobacterium tumefaciens. Plant Cell Rep 25:117–123

    Article  PubMed  CAS  Google Scholar 

  • Susuki K, Iwata K, Yoshida K (2001) Genome analysis of Agrobacterium tumefaciens: construction of physical maps for linear and circular chromosomal DNAs, determination of copy number ratio and mapping of chromosomal virulence genes. DNA Res 8:141–152

    Article  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Urtubia C, Devia J, Castro A, Zamora P, Aguirre C, Tapia E, Barba P, Dell Orto P, Moynihan MR, Petri C, Scorza R, Prieto H (2008) Agrobacterium-mediated transformation of Prunus salicina. Plant Cell Rep 27(8):1333–13340

    Article  PubMed  CAS  Google Scholar 

  • Yancheva SD, Shlizerman LA, Golubowicz S, Yabloviz Z, Perl A, Hanania U, Flaishman MA (2006) The use of green florescent protein (GFP) improves Agrobacterium-mediated transformation of “Spadona” pear (Pyrus communis L.). Plant Cell Rep 25:183–189

    Article  PubMed  CAS  Google Scholar 

  • Zravkovic-Korac S, Muhovski Y, Druart P, Calic D, Radojevic L (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698–704

    Article  Google Scholar 

Download references

Acknowledgments

All work with genetically transformed material was carried out in containment chambers under licence no. 4061 from the Ministry of Research. This work was partly funded by the European Union via the FAIR RTD Program (Research Project no. FAIR6-CT 984139; 1999–2004). The authors thank David Tepfer (INRA, Versailles, France) for kindly providing the A. rhizogenes A4R strain and Hervé Etienne (CIRAD, Montpellier, France) for his expert advices on transformation with agrobacteria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Esmenjaud.

Additional information

Communicated by E. Guiderdoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosselut, N., Van Ghelder, C., Claverie, M. et al. Agrobacterium rhizogenes-mediated transformation of Prunus as an alternative for gene functional analysis in hairy-roots and composite plants. Plant Cell Rep 30, 1313–1326 (2011). https://doi.org/10.1007/s00299-011-1043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1043-9

Keywords

Navigation