Skip to main content
Log in

Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The inheritance of resistance of the self-incompatible Myrobalan plum Prunus cerasifera to the root-knot nematode Meloidogyne arenaria was studied using first a diallel cross between five parents of variable host suitability (including two highly resistant clones P.1079 and P.2175, a moderate host P.2032, a good host P.2646 and an excellent host P.16.5), followed by the G2 crosses P.16.5 × (P.2646 × P.1079) and P.2646 × (P.16.5 × P.1079). A total of 355 G1 and 72 G2 clones obtained from hard-wood cuttings sampled from trees in the field experimental design, then rooted in the nursery and inoculated individually in containers (5–10 replicates per clone) under greenhouse conditions, were evaluated for their host suitability based on a 0–5 gall-index rating under a high and durable inoculum pressure of the nematode. In the crosses involving the resistant P.1079 and P.2175 and the hosts P.2646 and P.16.5: (1) all of the G1 crosses of P.1079 were resistant while the G2 crosses segregated 1 resistant to 1 host, (2) the G1 crosses between P.2175 and either P.2646 or P.16.5 segregated 1 resistant to 1 host, and (3) all of the G1 progeny between P.2646 and P.16.5 were host. These results indicate that resistance is conferred by a single major dominant resistance gene (homozygous) in P.1079, and the same, or an allelic or a different, major dominant gene (heterozygous) in P.2175, and that P.2646 and P.16.5 are recessive for this (these) major resistance gene(s). As expected according to the hypothesis of a recessive genotype for P.2032, all of its hybrids with P.1079 were resistant, all of its hybrids with P.2646 and P.16.5 were host, and its hybrids with P.2175 segregated for resistance. Nevertheless, the 3∶2 segregation ratio of these latter hybrids suggests that clones bearing the P.2175 gene would have a selective advantage. Both resistance genes are completely dominant and confer a non-host behaviour that totally prevents the multiplication of the nematode. This is the first reported evidence of major nematode resistance genes towards M. arenaria in a species of the subgenus Prunophora in the genus Prunus. The symbols Ma1 for the P.2175 gene and Ma2 for the P.1079 gene are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker KR (1985) Design of greenhouse and microplots experiments for evaluation of plant resistance to nematodes. In: Zuckerman BM, Mai WF, Harrison MB (eds) Plant nematology laboratory manual. University of Massachussets Agricultural Experimental Station, Amherst, pp 103–113

    Google Scholar 

  • Bernhard R (1962) Les hybrides prunierxpêcher et prunierxamandier: principales caractéristiques, comportement comme portegreffes éventuels du pêcher. In: Advances in horticultural science and their applications, vol II. Pergamon press, Oxford, pp 74–86

    Google Scholar 

  • Bernhard R, Grasselly C, Salesses G (1979) Orientation des travaux de sélection des porte-greffe du pêcher â la Station d'Arboriculture Fruitière de Bordeaux. In: Compte-rendu du Symposium de la section Fruits Eucarpia. Amélioration des Arbres fruitiers. Angers, September 1979. INRA, Paris, pp 277–286

    Google Scholar 

  • Burdett JF, Bird AF, Fisher JM (1963) The growth of Meloidogyne in Prunus persica. Nematologica 9:542–546

    Google Scholar 

  • Canals J, Pinochet J, Felipe A (1992) Temperature and age of plant affect resistance in peach-almond hybrid rootstock infected with Meloidogyne javanica. HortScience 27:1211–1213

    Google Scholar 

  • Cap GB, Roberts PA, Thomason IJ (1993) Inheritance of heat-stable resistance to Meloidogyne incognita in Lycopersicon peruvianum and its relationship to the Mi gene. Theor Appl Genet 85:777–783

    Google Scholar 

  • Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  Google Scholar 

  • Chitwood BG, Specht AW, Havis L (1952) Root-knot nematodes. III. Effects of Meloidogyne incognita and M. javanica on some peach rootstocks. Plant and Soil 4:77–95

    Google Scholar 

  • Cook R, Evans K (1987) Resistance and tolerance. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic press, Marrickville, Australia, pp 179–231

    Google Scholar 

  • Day LH, Tuft WP (1939) Further notes on nematode-resistant rootstocks for deciduous fruit trees. Proc Am Soc Hort Sci 37:327–329

    Google Scholar 

  • Esmenjaud D, Scotto La Massèse C, Salesses G, Minot JC, Voisin R (1992) Method and criteria to evaluate resistance to Meloidogyne arenaria'm Prunus cerasifera Ehr. Fund Appl Nematol 15:385–389

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Salesses G, Poupet R, Onesto JP (1993) Assessment of a method using plantlets grown from in vitro for studying resistance of Prunus cerasifera Ehr. (Myrobalan plum) to Meloidogyne spp. Nematropica 23:41–48

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Pinochet J, Salesses G (1994) Inter- and intra-specific resistance variability in Myrobalan plum, peach, and peach-almond rootstocks using 22 root-knot nematode populations. J Am Soc Hort Sci 119:94–100

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R, Salesses G, Bonnet A (1995) Effect of cutting age on the resistance of Prunus cerasifera (Myrobalan plum) to Meloidogyne arenaria. J Nematol 27(4S): 634–638

    Google Scholar 

  • Esmenjaud D, Minot JC, Voisin R (1996) Effects of durable inoculum pressure and high temperature on root galling, nematode numbers and survival of Myrobalan plum clones (Prunus cerasifera Ehr.) highly resistant to Meloidogyne spp. Fund Appl Nematol 19:85–90

    Google Scholar 

  • Fernandez C, Pinochet J, Esmenjaud D, Salesses G, Felipe A (1994a) Resistance among new Prunus rootstocks and selections to rootknot nematodes in Spain and France. HortScience 29:1064–1067

    Google Scholar 

  • Fernandez C, Pinochet J, Felipe A (1994b) Influence of temperature on the expression of resistance in six Prunus rootstocks infected with Meloidogyne incognita. Nematropica 23:195–202

    Google Scholar 

  • Gautheret RJ (1959) Ea culture des tissus végétaux. Editions Masson, Paris

    Google Scholar 

  • Havis L, Chitwood BG, Prince VE, Cobb GS, Taylor AL (1950) Susceptibility of some peach rootstocks to root-knot nematodes. Plant Dis Rep 34:74–77

    Google Scholar 

  • Janati A, Bergé JB, Triantaphyllou AC, Dalmasso A (1982) Nouvelles données sur l'utilisation des isoestérases pour l'identification des Meloidogyne. Rev Nématol 5:147–154

    Google Scholar 

  • Jenkins WR (1964) A rapid centrifugal flotation technique for separating nematodes from soil. Plant Dis Rep 48:692

    Google Scholar 

  • Johnson R (1983) Genetic background of durable resistance. In: Lamberti F, Waller JM, Van der Graaff NA (eds) Durable resistance in crops. Plenum Press, New York, pp 5–26

    Google Scholar 

  • Kester ED, Asay RN (1986) ‘Hansen 2168’ and ‘Hansen 536’: two new Prunus rootstocks clones. HortScience 21:331–332

    Google Scholar 

  • Kester ED, Grassely C (1987) Almond rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. John Wiley and sons, New York, pp 265–293

    Google Scholar 

  • Kochba J, Spiegel-Roy P (1975) Inheritance of resistance to the rootknot nematode Meloidogyne javanica (Chitwood) in bitter almond progenies. Euphytica 24:453–457

    Google Scholar 

  • Kochba J, Spiegel-Roy P (1976) ‘Alnem 1’, ‘Alnem 88’, ‘Alnem 201’ almonds: nematode-resistant rootstock seed source. HortScience 11:270

    Google Scholar 

  • Lamberti F (1979) Economic importance of Meloidogyne spp. in subtropical and mediterranean climates. In: Eamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne species): systematics, biology and control. Academic Press, New York, pp 342–357

    Google Scholar 

  • Layne REC (1987) Peach rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. John Wiley and sons. New York, pp 185–216

    Google Scholar 

  • Malo SE (1967) Nature of resistance of ‘Okinawa’ and ‘Nemaguard’ peach to the root-knot nematode Meloidogyne javanica. Proc Am Soc Hort Sci 90:39–46

    Google Scholar 

  • Minz G, Cohn E (1962) Susceptibility of peach rootstocks to root-knot nematodes. Plant Dis Rep 46:531–534

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Noe JP (1985) Analysis and interpretation of data from nematological experiments. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne. Vol II Methodology. North Carolina State University Graphics, Raleigh, pp 187–197

    Google Scholar 

  • Nyczepir AP (1991) Nematode management strategies in stone fruits in the United States. J Nematol 23:334–341

    Google Scholar 

  • Nyczepir AP, Halbrendt JM (1993) Nematode pests of deciduous fruit and nut trees. In: Evans K, Trudgill DL, Webster JM (eds) Plant parasitic nematodes in temperate agriculture. CAB International, Oxon UK, pp 381–425

    Google Scholar 

  • Omwega CO, Thomason IJ, Roberts PA (1990) A single dominant gene in common bean conferring resistance to three root-knot nematode species. Phytopathology 80:745–748

    Google Scholar 

  • Ramming DN, Tanner O (1983) ‘Nemared’ peach rootstock. Hort-Science 18:376

    Google Scholar 

  • Renaud R, Bernhard R, Grasselly G, Dosba F (1988) ‘Diploid plumxpeach hybrids’ rootstocks for stone fruits. HortScience 23:115–117

    Google Scholar 

  • Roberts P (1992) Current status of the availability, development and use of host plant resistance to nematodes. J Nematol 24:213–227

    Google Scholar 

  • Salesses G, Grasselly C, Renaud R, Claverie J (1992) Les portegreffe des espèces fruitières à noyau du genre Prunus. In: Gallais A, Bannerot H (eds) Amélioration des espèces végétales cultivées, objectifs et critères de sélection. INRA Paris, pp 605–650

    Google Scholar 

  • Salesses G, Grasselly C, Bernhard R (1994) Utilisation des espèces indigènes et exotiques pour l'amélioration des Prunus cultivés, variétés et porte-greffe. C R Acad Agric Fr 80:77–88

    Google Scholar 

  • Sasser JN (1977) Worldwide dissemination and importance of the root-knot nematode, Meloidogyne spp. J Nematol 22:585–589

    Google Scholar 

  • Scorza R, Okie W (1990) Peaches (Prunus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops. Acta Hort, ISHS, Wageningen, pp 177–231

    Google Scholar 

  • Scotto La Massèse C, Grasselly C, Minot JC, Voisin R (1984) Différence de comportement de 23 clones et hybrides de Prunus à l'égard de quatre espèces de Meloidogyne. Rev Nématol 7:265–270

    Google Scholar 

  • Scotto La Massèse C, Esmenjaud D, Minot JC, Voisin R (1990) Host suitability in the genus Prunus to Meloidogyne arenaria, particularly clones and intraspecific hybrids of P. cerasifera. Acta Hort 283:275–284

    Google Scholar 

  • Sharpe RH (1957) Okinawa peach shows promising resistance to root-knot nematode. Proc Fla State Hort Soc 70:320–322

    Google Scholar 

  • Sharpe RH, Perry VG (1967) Root-knot nematode populations on peaches in Florida. Proc Fla State Hort Soc 80:342–344

    Google Scholar 

  • Sharpe RH, Hesse CO, Lownsbery B A, Perry VG, Hansen CJ (1969) Breeding peaches for root-knot nematode resistance. J Am Soc Hort Sci 94:209–212

    Google Scholar 

  • Sherman WB, Lyrene PM (1983) Improvment of peach rootstocks resistant to root-knot nematodes. Proc Fla State Hort Soc 96: 207–208

    Google Scholar 

  • Sherman WB, Lyrene PM, Hansche PE (1981) Breeding peach root-stocks resistant to root-knot nematode. HortScience 64:523–524

    Google Scholar 

  • Sherman WB, Lyrene PM, Sharpe RH (1991) Flordaguard peach rootstock. HortScience 26:427–428

    Google Scholar 

  • Sidhu G, Webster JM (1973) Genetic control of resistance in tomato I. Identification of genes for host resistance to Meloidogyne incognita. Nematologica 19:546–550

    Google Scholar 

  • Sidhu G, Webster JM (1975) Linkage and allelic relationships among genes for resistance in tomato (Lycopersicon esculentum) against Meloidogyne incognita. Can J Genet Cytol 17:323–328

    Google Scholar 

  • Triantaphyllou AC (1985) Cytogenetics, cytotaxonomy and phylogeny of root-knot nematodes. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, vol I. North Carolina State University Graphics, Raleigh, pp 113–126

    Google Scholar 

  • Tuft WP (1929) Nematode resistance of certain peach seedlings. Proc Am Soc Hort Sci 26:98–110

    Google Scholar 

  • Van der Plank JE (1968) Disease resistance in plants. Academic Press, New York

    Google Scholar 

  • Williams WP, Windham GL (1990) Resistance of maize to Meloidogyne arenaria and Meloidogyne javanica. Theor Appl Genet 80:810–812

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmenjaud, D., Minot, J.C., Voisin, R. et al. Inheritance of resistance to the root-knot nematode Meloidogyne arenaria in Myrobalan plum. Theoret. Appl. Genetics 92, 873–879 (1996). https://doi.org/10.1007/BF00221900

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00221900

Key words

Navigation