Skip to main content
Log in

Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

The possibility of rapid validation and functional analysis of nematode resistance genes is a common objective for numerous species and particularly for woody species. In this aim, we developed an Agrobacterium rhizogenes-mediated transformation protocol for Coffea arabica enabling efficient and rapid regeneration of transformed roots from the hypocotyls of germinated zygotic embryos, and the subsequent production of composite plants. The A. rhizogenes strain A4RS proved to be the most virulent. High transformation efficiencies (70%) were obtained using a 2-week co-cultivation period at a temperature of 15–18°C. Using a p35S-gusA-int construct inserted in the pBIN19 binary plasmid, we could estimate that 35% of transformed roots were GUS positive (co-transformed). Using the GUS assay as visual marker, 40% composite plants bearing a branched co-transformed rootstock could be obtained after only 12 weeks without selection with herbicides or antibiotics. Transgenic coffee roots obtained with A. rhizogenes did not exhibit the ‘hairy’ disturbed phenotype and were morphologically similar to normal roots. PCR analyses demonstrated that all co-transformed roots were positive for the expected rolB and gusA genes. Transformed and non-transformed root systems from both susceptible and resistant varieties were inoculated with Meloidogyne exigua nematode individuals. Inoculation of composite plants from the Caturra susceptible variety resulted in the normal development of nematode larvae. Numbers of extracted nematodes demonstrated that transformed roots retain the resistance/sensibility phenotype of varieties from which they are derived. These results suggest that composite plants constitute a powerful tool for studying nematode resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akasaka Y, Mii M, Daimon H (1998) Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot 81:355–362

    Article  Google Scholar 

  • Bertrand B, Anthony F, Lashermes P (2001) Breeding for resistance to Meloidogyne exigua of Coffea arabica by introgression of resistance genes of Coffea canephora. Plant Pathol 50:637–644

    Article  Google Scholar 

  • Bonhomme V, Laurain-Mattar D, Fliniaux MA (2000) Effects of the rol C gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. J Nat Prod 63:1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Bécard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff HJ, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grunler FMW, Jung C (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275:832–834

    Article  PubMed  CAS  Google Scholar 

  • Campos VP, Sivapalan P, Gnanapragasam NC (1990) Nematode parasites of coffee, cocoa and tea. In: Luc M, Sikora RA, Bridge J (eds) Plant–parasitic nematodes in subtropical and tropical agriculture. CAB International, Wallingford, pp 113–126

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  PubMed  CAS  Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Agrobacterium rhizogenes inserts T-DNA into the genome of the host plant root cells. Nature 295:432–434

    Article  CAS  Google Scholar 

  • Chitwood DJ (2003) Research on plant–parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Manag Sci 59:748–753

    Article  PubMed  CAS  Google Scholar 

  • Cho H-J, Farrand SK, Noel GR, Widholm JM (2000) High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210:195–204

    Article  PubMed  CAS  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687–700

    Article  CAS  Google Scholar 

  • Daimon H, Fukami M, Mii M (1990) Hairy root formation in peanut by the wild type strains of Agrobacterium rhizogenes. Plant Tiss Cult Lett 7:31–34

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorrhizal tree. Mol Plant Microbe Interact 8:532–537

    PubMed  CAS  Google Scholar 

  • Ernst K, Kumar A, Kriseleit DK, Phillips MS and Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS–LRR genes with an unusual amino acid repeat in the LRR. Plant J 31:127–136

    Article  PubMed  CAS  Google Scholar 

  • Etienne H (2005) Protocol of somatic embryogenesis: coffee (Coffea arabica L. and C. canephora P.). In: Jain SM, Gupta P (eds) Protocols of somatic embryogenesis-woody plants. vol 77: Forestry sciences series, 590 pp. Springer, The Netherlands, pp 167–179

  • Franche C, N'Diaye A, Gobé C, Alloneau C, Bogusz D, Duhoux E (1999) Genetic transformation of Allocasuarina verticillata. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. vol 44: Transgenic trees. Springer-Verlag, Berlin Heidelberg, pp 1–14

    Google Scholar 

  • Fulner KJ, Nester EW (1996) Temperature affects the T-DNA machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504

    PubMed  Google Scholar 

  • Grant JE, Dommisse EM, Conner AJ (1991) Gene transfer to plants using Agrobacterium. In: Murray DR (ed) Advanced methods in plant breeding and biotechnology. CAB International, Wallingford, pp 50–73

    Google Scholar 

  • Hansen J, Jorgensen JE, Stougaard J, Marker KA (1989) Hairy roots a short cut to transgenic root nodules. Plant Cell Rep 8:12–15

    Article  Google Scholar 

  • Hansen G, Larribe M, Vaubert D, Tempé J, Biermann BJ, Montoya AL, Chilton MD, Brevet J (1991) Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. PNAS 88:7763–7767

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka T, Choi YE, Kusano T, Sano H (1999) Transgenic plants of coffee Coffea canephora from embryogenic callus via Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 19:106–110

    Article  CAS  Google Scholar 

  • Hussey RS, Baker JN (1973) A comparison of methods for collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  • Hwang C-F, Bhakta AV, Truesdell GM, Pudlo WM, Williamson VM (2000) Evidence for a role of the N terminus and leucine-rich repeat region of the Mi gene product in regulation of localized cell death. Plant cell 12:1319–1329

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jouanin L, Tourneur J, Casse-Delbart F (1986) Restriction maps and homologies of the three plasmids of Agrobacterium rhizogenes strain A4. Plasmid 16:124–134

    Article  PubMed  CAS  Google Scholar 

  • Kifle S, Shao M, Jung C, Cai D (1999) An improved transformation protocol for studying gene expression in hairy roots of sugar beet (Beta vulgaris L.). Plant Cell Rep 18:514–519

    Article  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Królica A, Staniszewska I, Bielawski K, Malinski E, Szafranek J, Lojkowska E (2001) Establishment of hairy root cultures of Ammi majus. Plant Sci 2:259–264

    Article  Google Scholar 

  • Kumar V, Satyanarayana KV, Itty SS, Indu EP, Giridhar P, Chandrashekar A, Ravishankar GA (2005) Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep (in press)

  • Leroy T, Henry AM, Royer M, Altosaar I, Frutos R, Duris D, Philippe R (2000) Genetically modified coffee plants expressing the Bacillus thuringiensis cry1Ac gene for resistance to leaf miner. Plant Cell Rep 19:382–389

    Article  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narayanan RA, Atz R, Denny R, Young ND, Somers DA (1999) Expression of soybean cyst nematode resistance in transgenic hairy roots of soybean. Crop Sci 39:1680–1686

    Article  Google Scholar 

  • Noir S, Anthony F, Bertrand B, Combes MC, Lashermes P (2003) Identification of a major gene (Mex-1) from Coffea canephora conferring resistance to Meloidogyne exigua in coffee. Plant Pathol 52:97–103

    Article  CAS  Google Scholar 

  • Phelep M, Petit A, Martin L, Duhoux E, Tempé J (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina verticillata Lam. Biotechnology 9:461–466

    Article  CAS  Google Scholar 

  • Plovie E, de Buck S, Goeleven E, Tanghe M, Vercauteren I, Gheysen G (2003) Hairy roots to test for transgenic nematode resistance: think twice. Nematology 5:831–841

    Article  CAS  Google Scholar 

  • Quandt H-J, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsute: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6:699–706

    Google Scholar 

  • Remeeus PM, van Bezooijen J, Wijbrandi J, van Bezooijen J (1998) In vitro testing is a reliable way to screen the temperature sensitivity of resistant tomatoes against Meloidogyne incognita. In: Proceedings of 5th international symposium on crop protection, Universiteit Gent, Belgium, vol. 63, no. 2b, pp 635–640

  • Ribas AF, Kobayashi AK, Pereira LFP, Vieira LGE (2005) Genetic transformation of Coffea canephora by particle bombardment. Biol Plant 49:493–497

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York

    Google Scholar 

  • Shahin EA, Sukhapinda K, Simpson RB, Spivey R (1986) Transformation of cultivated tomato by a binary vector in Agrobacterium rhizogenes: transgenic plants with normal phenotypes harbour binary vector T DNA, but no Ri-plasmid T-DNA. TAG 72:770–777

    CAS  Google Scholar 

  • Shiomi T, Shirakawa T, Takeuchi S, Oizumi T, Uematsu S (1987) Hairy root of melon caused by Agrobacterium rhizogenes biovar 1. Ann Phytopath Soc Jpn 53:454–459

    Google Scholar 

  • Spiral J, Thierry C, Paillard M, Pétiard V (1993) Obtention de plantules de Coffea canephora Pierre (Robusta) transformées par Agrobacterium rhizogenes. CR Acad Sci Paris 316:1–6

    CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 79:140–146

    Article  CAS  Google Scholar 

  • Terada R, Shimamoto K (1990) Expression of CaMV35S-GUS gene in transgenic rice plants. Mol Gen Genet 220:389–392

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene. Splicing of the intron in transgenic plants and its issue in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • Van der Vossen EAG, Van der Voort JNAM, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein-Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23:567–576

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. David Tepfer for sending the A. rhizogenes wild strains. We also thank Dr. David Barker for sending the ARqua1 strain and for a great deal of advice on A. rhizogenes-mediated transformation. Financial support for this study was provided by the European Union through a grant to E. Alpizar by the ‘Programme Alßan’ European Union Programme of High Level Scholarships for Latin America (No. E03D16144CR), by the INCO Project entitled ‘Breeding tools for durable resistance to root-knot nematodes (Meloidogyne sp.) of coffee varieties in Latin America’ (No. ICA4-CT-2001-10070) and by the CIRAD funds for doctorate support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Etienne.

Additional information

Communicated by P. Debergh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alpizar, E., Dechamp, E., Espeout, S. et al. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25, 959–967 (2006). https://doi.org/10.1007/s00299-006-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-006-0159-9

Keywords

Navigation