Skip to main content
Log in

Genetic transformation of selected mature cork oak (Quercus suber L.) trees

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

A transformation system for selected mature cork oak (Quercus suber L.) trees using Agrobacterium tumefaciens has been established. Embryos obtained from recurrent proliferating embryogenic masses were inoculated with A. tumefaciens strains EHA105, LBA4404 or AGL1 harbouring the plasmid pBINUbiGUSint [carrying the neomycin phosphotransferase II (nptII) and β-glucuronidase (uidA) genes]. The highest transformation efficiency (4%) was obtained when freshly isolated explants were inoculated with A. tumefaciens strain AGL1. Evidence of stable transgene integration was obtained by PCR for the nptII and uidA genes, Southern blotting and expression of the uidA gene. The transgenic embryos were germinated and successfully transferred to soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3
Fig. 4
Fig. 5a, b

Similar content being viewed by others

Abbreviations

BA:

N 6-Benzyladenine

GUS:

β-Glucuronidase

MSSH:

Expression-proliferation medium

NAA:

α-Naphthaleneacetic acid

nptII :

Neomycin phosphotransferase gene

uidA :

β-Glucuronidase gene

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA, Verma, D-PS (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–19

  • Bevan M (1984) Binary Agrobacterium vectors for plan transformation. Nucleic Acids Res 12:8711–8721

    PubMed  Google Scholar 

  • Bueno MA, Astorga R, Manzanera JA (1992) Plant regeneration through somatic embryogenesis in Quercus suber. Physiol Plant 85:30–34

    Article  Google Scholar 

  • Christensen AH, Quail PH (1992) Maize polyubiquitin genes: genes, structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    CAS  PubMed  Google Scholar 

  • Ecker P, Roshal S, Schell J, Willmitzer L (1986) Isolation and characterization of a light-inducible, organ-specific gene from potato and the analysis of its expression after tagging and transfer in tobacco and potato shoots. Mol Gen Genet 199:216–244

    Google Scholar 

  • Fernández-Guijarro B, Celestino C, Toribio M (1994) Somatic embryogenesis in Quercus suber L. In: Pardos JA, Ahuja MR, Elena-Rossello R (eds) Biotechnology of trees. Investigación Agraria, Sistemas y Recursos Forestales, no 4, pp 105–110

  • Fernández-Guijarro B, Celestino C, Toribio M (1995) Influence of external factors on secondary embryogenesis and germination in somatic embryos from leaves of Quercus suber L. Plant Cell Tissue Organ Cult 41:99–106

    Google Scholar 

  • Gallego FJ, Martínez I, Celestino C, Toribio M (1997) Testing somaclonal variations using RAPDs in Quercus suber L somatic embryos. Int J Plant Sci 158:563–567

    Article  CAS  Google Scholar 

  • Hamill J, Rounsley S, Spencer A, Todd G, Rhodes M (1990) The use of the polymerase chain reaction to detect specific sequences in transformed plant tissues. In: Nijkamp HJS, Van der Plas LHW, Van Aartijk (eds) Progress in plant cellular molecular biology. Kluwer, Dordrecht pp 183–188

  • Hellens R, Mullineaux P (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451

    CAS  PubMed  Google Scholar 

  • Hernández I, Celestino C, Martínez I, Manjón JL, Díez J, Fernández-Guijarro B, Toribio M (2001) Cloning mature cork oak (Quercus suber L.) trees by somatic embryogenesis. Melhoramento 37:50–57

    Google Scholar 

  • Hernández I, Celestino C, Alegre J, Toribio M (2003a) Vegetative propagation of Quercus suber L. by somatic embryogenesis. II. Plant regeneration from selected cork oak trees. Plant Cell Rep 21:765–770

    PubMed  Google Scholar 

  • Hernández I, Celestino C, Toribio M (2003b) Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764

    PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Hood EE, Clapham DH, Ekberg I, Johanson T (1990) T-DNA presence and opine production in tumors of Picea abies (L.) Karst induced by Agrobacterium tumefaciens A281. Plant Mol Biol 14:111–117

    CAS  PubMed  Google Scholar 

  • Hornero J, Martinez I, Celestino C, Gallego FJ, Torres V, Toribio M (2001) Early checking of genetic stability of cork oak somatic embryos by AFLP analysis. Int J Plant Sci 162:827– 833

    Article  CAS  Google Scholar 

  • Humara J, Ordás RJ (1999) The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation on Pinus pinea L. cotyledons. In Vitro Cell Dev Biol Plant 35:339–343

    Google Scholar 

  • Humara J, Martín MS, Parra F, Ordás RJ (1999) Improved efficiency of uidA gene transfer in stone pine (Pinus pinea) cotyledons using a modified binary vector. Can J For Res 29:1627–1632

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    CAS  PubMed  Google Scholar 

  • Manzanera JA, Astorga R, Bueno MA (1993) Somatic embryo induction and germination in Quercus suber L. Silvae Genet 42:90–93

    Google Scholar 

  • Merkle SA, Dean J FD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    CAS  PubMed  Google Scholar 

  • Merkle SA, Parrot WA, Williams EG (1990) Applications of somatic embryogenesis and embryo cloning. In: Bhojwani SS (ed) Plant tissue culture: applications and limitations. Elsevier, Amsterdam, pp 67–101

  • Nauerby B, Billing K, Wyndaele R (1997) Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci 123:169–177

    Article  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    PubMed  Google Scholar 

  • Puigderrajols P, Fernández-Guijarro B, Toribio M, Molinas M (1996) Origin and early development of secondary embryos in Quercus suber L. Int J Plant Sci 157:674–684

    Article  Google Scholar 

  • Puigderrajols P, Celestino C, Suils M, Toribio M, Molinas M (2000) Histology of organogenic and embryogenic responses in cotyledons of somatic embryos of Quercus suber L. Int J Plant Sci 161:353–362

    Article  PubMed  Google Scholar 

  • Puigderrajols P, Mir G, Molinas (2001) Ultrastructure of early secondary embryogenesis by multicellular and unicellular pathways in cork oak (Quercus suber L.). Ann Bot 87:179–189

    Google Scholar 

  • Roest S, Brueren HGMJ, Evers PW, Vermeer E (1991) Agrobacterium-mediated transformation of oak (Quercus robur L.). Acta Hortic 289:259–260

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Seabra RC, Pais MS (1997) Genetic transformation of European chestnut. Plant Cell Rep 17:177–182

    Article  Google Scholar 

  • Seabra RC, Pais MS (1999) Genetic transformation of European chestnut (Castanea sativa Mill.) with genes of interest. Acta Hortic 494:407–414

    Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sánchez A, Willmitzer L, Rocha-Rosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    CAS  PubMed  Google Scholar 

  • Wilhelm E (2000) Somatic embryogenesis in oak (Quercus spp.). In Vitro Cell Dev Biol Plant 36:349–357

    Google Scholar 

  • Wilhelm E, Burg A, Berenyi M, Endemann M, Rodler R (1996) Plantlet regeneration via somatic embryogenesis and investigations on Agrobacterium tumefaciens mediated transformation of oak (Quercus robur). In: Ahuja MR, Boerjan W, Neale DB (eds) Somatic cell genetics and molecular genetics of trees. Kluwer, Dordrecht, pp 119–124

  • Zobel BJ, Talbert JT (1984) Vegetative propagation. In: Applied forest tree improvement. Wiley, New York, pp 309–344

Download references

Acknowledgements

The authors thank Dr. J.M. Martín-Alonso for his technical support and Dr. J. Fernández-Humara for revision of the manuscript. R. Álvarez is supported by a FICYT research fellowship funded by Plan Investigación, Desarrollo Tecnológico e Innovación de Asturias 2001–2004 of the Gobierno del Principado de Asturias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Ordás.

Additional information

Communicated by L. Peña

Rights and permissions

Reprints and permissions

About this article

Cite this article

Álvarez, R., Alonso, P., Cortizo, M. et al. Genetic transformation of selected mature cork oak (Quercus suber L.) trees. Plant Cell Rep 23, 218–223 (2004). https://doi.org/10.1007/s00299-004-0810-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-004-0810-2

Keywords

Navigation