Skip to main content
Log in

High efficiency poplar transformation

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

With the completion of the poplar tree genome database, Populus species have become one of the most useful model systems for the study of woody plant biology. Populus tremuloides (quaking aspen) is the most wide-spread tree species in North America, and its rapid growth generates the most abundant wood-based biomass out of any other plant species. To study such beneficial traits, there is a need for easier and more efficient transformation procedures that will allow the study of large numbers of tree genes. We have developed transformation procedures that are suitable for high-throughput format transformations using either Agrobacterium tumefaciens to produce transformed trees or Agrobacterium rhizogenes to generate hairy roots. Our method uses Agrobacterium inoculated aspen seedling hypocotyls followed by direct thidiazuron (TDZ)-mediated shoot regeneration on selective media. Transformation was verified through β-glucuronidase (GUS) reporter gene expression in all tree tissues, PCR amplification of appropriate vector products from isolated genomic DNA, and northern hybridization of incorporated and expressed transgenes. The hairy root protocol follows the same inoculation procedures and was tested using GUS reporter gene integration and antibiotic selection. The benefit of these procedures is that they are simple and efficient, requiring no maintenance of starting materials and allowing fully formed transgenic trees (or hairy roots) to be generated in only 3–4 months, rather than the 6–12 months required by more traditional methods. Likewise, the fact that the protocols are amenable to high-throughput formats makes them better suited for large-scale functional genomics studies in poplars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

Cb:

Carbenicillin

Gm:

Gentamycin

GUS:

β-glucuronidase

HEPT:

High efficiency poplar transformation

HPT :

Hygromycin phosphotransferase gene

Kan:

Kanamycin

LB:

Lauria Broth

MES:

2-[N-morpholinil]ethanesulfonic acid

NPTII :

Neomycin phosphotransferase II gene

PCR:

Polymerase chain reaction

TDZ:

N-phenyl-N′-1,2,3-thiadiazol-5-yl-urea (thidiazuron)

WPM:

Wood plant medium (Lloyd and McCown 1980)

X-gluc:

5-bromo-4-chloro-3-indolyl-β-glucuronic acid

References

  • Alban DH, Perala DA, Jurgensen MF, Ostry ME, Probst JR (1991) Aspen ecosystem properties in the Upper Great Lakes. Research Paper NC-300 St Paul. US Dept of Agriculture, Forest Service, North Central Forest Experiment Station

  • Barret JW (1980) Regional silviculture of the United States. Wiley, New York, pp 551

    Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14(6):695–700

    Article  PubMed  CAS  Google Scholar 

  • Cripps CL, Miller OK (1993) Ectomycorrhizal fungi associated with aspen on three sites in the north-central Rocky Mountains. Can J Bot 71:1414–1420

    Google Scholar 

  • Cseke LJ, Podila GK (2004) MADS-box Genes in Dioecious Aspen II: a review of MADS-box genes from trees and their potential in forest biotechnology. Physiol Mol Biol Plants 10:7–28

    CAS  Google Scholar 

  • Cseke LJ, Kaufman PB, Podila GK, Tsai CJ (2004) Handbook of molecular and cellular methods in biology and medicine, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Cseke LJ, Cseke SB, Ravinder N, Taylor L, Shankar A, Sen B, Thakur R, Karnosky DF, Podila GK (2005) SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene 358:1–16

    Article  PubMed  CAS  Google Scholar 

  • Cseke LJ, Ravinder N, Pandey AK, Podila GK (2007) Identification of PTM5 protein interaction partners, a MADS-box gene involved in aspen tree vegetative development. Gene 391:209–222

    Article  PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) a gateway cloning vector set for high-throughput functional analysis of gene in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Dai W, Cheng Z, Sargent W (2003) Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues. In Vitro Cell Dev Biol Plant 39:6–11

    Article  Google Scholar 

  • Datla RSS, Bekkaoui F, Hammerlindl JK, Piate G, Dunstan DI, Crosby WL (1993) Improved high-level constitutive foreign gene expression in plants using AMV RNA4 untranslated leader sequence. Plant Sci 94:139–149

    Article  CAS  Google Scholar 

  • Frey BR, Lieffers VJ, Landhäusser SM, Comeau PG, Greenway KJ (2003) An analysis of sucker regeneration of trembling aspen. Can J For Res 33(7):1169–1179

    Article  Google Scholar 

  • Han K-H, Gordon MP, Strauss SH (1997) High-frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes. Can J For Res 27:464–470

    Article  Google Scholar 

  • Han K-H, Meilan R, Ma C, Strauss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep 19:315–320

    Article  CAS  Google Scholar 

  • Isebrands JG, Karnosky DF (2002) Environmental benefits of poplar culture In: Dickmann DI, Isebrands JG, Eckenwalder JE, Richardson J (ed) Poplar Culture in North America Part A, chap 6. NRS Research Press, National Research Council of Canada, Ottawa, pp 207–218

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kumar V, Sharma A, Prasad BCN, Gururaj HB, Ravishankar GA (2006) Agrobacterium rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electron J Biotech 9(4):349–357

    Google Scholar 

  • Lammers P, Tuskan GA, DiFazio SP, Podila GK, Martin F (2004) Mycorrhizal symbionts of Populus to be sequenced by the United States Department of Energy’s Joint Genome Institute. Mycorrhiza 14:63–64

    Article  PubMed  CAS  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int Plant Propag Soc Proc 30:421–427

    Google Scholar 

  • Ma C, Strauss SH, Meilan R (2004) Agrobacterium-mediated transformation of the genome-sequenced poplar clone, Nisqualy-1 (Populus trichocarpa). Plant Mol Biol Rep 22:1–9

    Google Scholar 

  • Minocha SC, Noh EW, Kausch AP (1986) Tissue culture and genetic transformation in Betula papyrifera and Populus tremuloides. In: Proceedings of TAPPI research and development conference, TAPPI Press, Atlanta, pp 89–92

  • Mitton J, Grant M (1996) Genetic variation and the natural history of quaking aspen. Bioscience 46(1):25–31

    Article  Google Scholar 

  • Park S, Oh S, Han K-H (2004) Large-scale computational analysis of poplar ESTs reveals the repertoire and unique features of expressed genes in the poplar genome. Mol Breed 14:429–440

    Article  CAS  Google Scholar 

  • Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP (1986) Transformation of poplar by Agrobacterium tumefaciens. Biotechnology 4:533–536

    Article  CAS  Google Scholar 

  • Quandt H, Puhler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6(6):699–706

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Song J, Lu S, Chen Z-Z, Lourenco R, Chaing VL (2006) Genetic transformation of Populus trichocarpa genotype Nisqually-1: a functional genomic tool for woody plants. Plant Cell Physiol 47(11):1582–1589

    Article  PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Lindvall JJ, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlen M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101(38):13951–13956

    Article  PubMed  Google Scholar 

  • Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90(6):681–689

    Article  PubMed  CAS  Google Scholar 

  • Tsai CJ, Podila GK, Chiang VL (1994) Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants. Plant Cell Rep 14:94–97

    Article  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 313(5793):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T, Jensen C, Wang W, Zuker A, Vinocur B, Altman A, Vainstein A (1997) Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol Biol Rep 15:219–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Guillaume Becard for supplying the A. rhizogenes ARqua1 strain used in this work and Dr. Mark Curtis for supplying the Gateway cloning vectors. This work was supported in part by NSF grant MCB-0421326 to GKP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopi K. Podila.

Additional information

Communicated by P.P. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cseke, L.J., Cseke, S.B. & Podila, G.K. High efficiency poplar transformation. Plant Cell Rep 26, 1529–1538 (2007). https://doi.org/10.1007/s00299-007-0365-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0365-0

Keywords

Navigation