Skip to main content

Advertisement

Log in

Irradiation assisted synthesis of hydrogel: A Review

  • REVIEW PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Hydrogels are crosslinked hydrophilic systems that can be made up of various routes. Radiation technology is one of the advanced routes explored for hydrogel synthesis. The gamma, electron beam, and microwave are the most extensively studied irradiation methods for hydrogel. The ionising radiations gamma and electron beam offer the benefit of synthesis and grafting without any initiator or crosslinker; hence, the highly pure product can be made and sterilisation can be achieved in a single step which is beneficial for medical applications. With a variation of the dosage of radiation, the gel content and swelling behaviour can be adjusted as these are the two prime properties. Both the gel fraction and swelling capacity increase up to a certain dosage and increasing the dosage further leads to a decrease in the performance due to compact structure formation, with more crosslinking points, and sometimes deterioration of properties in the case of natural polymers. Hence, optimization of radiation dosage is the crucial step. The nonionising radiation, namely microwave, is explored for the synthesis and it offers the benefit of better yield with faster reaction time. The radiation dosage studied for gamma is 0.5–50 KGy by varying the dose rate, whereas for electron beam, the dosage variation is mostly seen in the range of 10–50 KGy, whereas in few cases, 300 KGy is also studied and beam energy and beam current are another key parameter. By microwave, the power variation is done in the range of 100–800 W for the hydrogel synthesis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

EB:

Electron beam

kGy:

KiloGray

EG:

Ethylene glycol

MAA:

Methacrylic acid

AMPS:

2-Acrylamido-2-methylpropane-sulphonic acid

PEO:

Polyethylene oxide

CMC:

Carboxymethyl cellulose

CTS:

Chitosan

HPC:

Hydroxypropyl cellulose

PVA:

Polyvinyl alcohol

Am:

Acrylamide

PAm:

Polyacrylamide

PAA:

Polyacrylic acid

AA:

Acrylic acid

PVP:

Poly(vinyl pyrrolidone)

PEI:

Polyethyleneimine

MAc:

Malonic acid

NVP:

N-Vinyl-2-pyrrolidone

IPNs:

Interpenetrating polymer networks

Sty:

Styrene

DMAEMA:

Dimethylaminoethyl methacrylate

EGDMA:

Ethyleneglycol dimethacrylate

MHEC:

Methyl hydroxyethyl cellulose

KC:

Kappa-carrageenan

GA:

Gum arabica

DMAAm:

Dimethyl acrylamide

HEMA:

Hydroxyethyl methacrylate

NIPAm:

N-Isopropylacrylamide

PNIPAm:

Poly(N-isopropylacrylamide)

MAETC:

[2-(Methacryloyloxy)ethyl]trimethylammonium chloride

AB25:

Acid blue 25

AB74:

Acid blue 74

AY99:

Acid yellow 99

CMCS:

Carboxymethyl chitosan

PLA:

Poly(lactic acid)

ws-chitosan:

Water-soluble chitosan

Mam:

Methacrylamide

POPGMA:

Poly(oligo(propylene glycol) methacrylate)

NIPAm:

N-Isopropylacrylamide

VBT:

Vinylbenzyltrimethylammonium chloride

SSS:

Sodium styrene sulphonate

TG:

Tara Gum

AbA:

Abietic acid

PGA:

Poly(7-glutamic acid)

MMT:

Montmorillonite

BA:

N-Butyl acrylate

SA:

Sodium alginate

PL:

Poly(ε-lysine)

AC:

Activated carbon

CA:

Cellulose acetate

PLST:

Plasticized starch

PEGDC:

Poly(ethylene glycol) dicarboxylate

HPMCP:

Hydroxypropyl methylcellulose phthalate

CMHA:

Carboxymethyl hyaluronic acid

PVME:

Poly(vinylmethyl ether)

HPMC:

Hydroxypropyl methylcellulose

References

  1. Singh B, Vashishtha M (2008) Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266(9):2009–2020. https://doi.org/10.1016/j.nimb.2008.03.086

    Article  CAS  Google Scholar 

  2. Piechocki K, Kozanecki M, Kadlubowski S, Pacholczyk-Sienicka B, Ulanski P, Biela T (2018) Controlling the properties of radiation-synthesized thermoresponsive oligoether methacrylate hydrogels by varying the monomer side-chain length; self-composite network containing crystalline phase. Polymer (Guildf) 150:275–288. https://doi.org/10.1016/j.polymer.2018.07.025

    Article  CAS  Google Scholar 

  3. Nikolic VM, Krkljes A, Popovic ZK, Lausevic ZV, Miljanic SS (2007) On the use of gamma irradiation crosslinked PVA membranes in hydrogen fuel cells. Electrochem Commun 9(11):2661–2665. https://doi.org/10.1016/j.elecom.2007.08.022

    Article  CAS  Google Scholar 

  4. Tohfafarosh M, Baykal D, Kiel JW, Mansmann K, Kurtz SM (2016) Effects of gamma and e-beam sterilization on the chemical, mechanical and tribological properties of a novel hydrogel. J Mech Behav Biomed Mater 53:250–256. https://doi.org/10.1016/j.jmbbm.2015.08.024

    Article  CAS  PubMed  Google Scholar 

  5. Park J, Kim M, Choi S, Sun JY (2020) Self-healable soft shield for γ-ray radiation based on polyacrylamide hydrogel composites. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-78663-x

    Article  CAS  Google Scholar 

  6. Jiang F, Wang X, He C, Saricilar S, Wang H (2015) Mechanical properties of tough hydrogels synthesized with a facile simultaneous radiation polymerization and cross-linking method. Radiat Phys Chem 106:7–15. https://doi.org/10.1016/j.radphyschem.2014.06.020

    Article  CAS  Google Scholar 

  7. Eid M, Abdel-Ghaffar MA, Dessouki AM (2009) Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267(1):91–98. https://doi.org/10.1016/j.nimb.2008.11.011

    Article  CAS  Google Scholar 

  8. Raafat AI, Eid M, El-Arnaouty MB (2012) Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 283:71–76. https://doi.org/10.1016/j.nimb.2012.04.011

    Article  CAS  Google Scholar 

  9. Khoylou F, Naimian F (2009) Radiation synthesis of superabsorbent polyethylene oxide/tragacanth hydrogel. Radiat Phys Chem 78(3):195–198. https://doi.org/10.1016/j.radphyschem.2008.11.008

    Article  CAS  Google Scholar 

  10. Kadlubowski S, Matusiak M, Jenczyk J, Olejniczak MN, Kozanecki M, Okrasa L (2014) Radiation-induced synthesis of thermo-sensitive, gradient hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate. Radiat Phys Chem 100:23–31. https://doi.org/10.1016/j.radphyschem.2014.03.014

    Article  CAS  Google Scholar 

  11. Wang Q, Zhou X, Zeng J, Wang J (2016) Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 368:90–95. https://doi.org/10.1016/j.nimb.2015.12.020

    Article  CAS  Google Scholar 

  12. Yan S, Yin J, Yu Y, Luo K, Chen X (2009) Thermo-and pH-sensitive poly(vinylmethyl ether)/carboxymethylchitosan hydrogels crosslinked using electron beam irradiation or using glutaraldehyde as a crosslinker. Polym Int 58(11):1246–1251. https://doi.org/10.1002/pi.2649

    Article  CAS  Google Scholar 

  13. Pekel N, Güven O (2002) Synthesis and characterization of poly(N-vinyl imidazole) hydrogels crosslinked by gamma irradiation. Polym Int 51(12):1404–1410. https://doi.org/10.1002/pi.1065

    Article  CAS  Google Scholar 

  14. Maq B, Rahman MS (2015) Improvement of swelling behaviour of poly(vinyl pyrrolidone) and acrylic acid blend hydrogel prepared by the application of gamma radiation. Org Chem Curr Res. https://doi.org/10.4172/2161-0401.1000138

    Article  Google Scholar 

  15. Al-Abboodi A, Fu J, Doran PM, Chan PPY (2013) Three-dimensional nanocharacterization of porous hydrogel with ion and electron beams. Biotechnol Bioeng 110(1):318–326. https://doi.org/10.1002/bit.24612

    Article  CAS  PubMed  Google Scholar 

  16. Tahtat D et al (2011) Influence of some factors affecting antibacterial activity of PVA/Chitosan based hydrogels synthesized by gamma irradiation. J Mater Sci Mater Med 22(11):2505–2512. https://doi.org/10.1007/s10856-011-4421-5

    Article  CAS  PubMed  Google Scholar 

  17. Entezam M, Daneshian H, Nasirizadeh N, Khonakdar HA, Jafari SH (2017) Hybrid hydrogels based on poly(vinyl alcohol) (PVA)/agar/poly(ethylene glycol) (PEG) prepared by high energy electron beam irradiation: investigation of physico-mechanical and rheological properties. Macromol Mater Eng 302(2):1–9. https://doi.org/10.1002/mame.201600397

    Article  CAS  Google Scholar 

  18. Calina I, Demeter M, Vancea C, Scarisoreanu A, Meltzer V (2018) E-beam radiation synthesis of xanthan-gum/carboxymethylcellulose superabsorbent hydrogels with incorporated graphene oxide. J Macromol Sci Part A Pure Appl Chem 55(3):260–268. https://doi.org/10.1080/10601325.2018.1424552

    Article  CAS  Google Scholar 

  19. Gallardo AKR, Relleve LS, Silos AP (2022) Gel properties of carboxymethyl hyaluronic acid/polyacrylic acid hydrogels prepared by electron beam irradiation. Mater Proc. https://doi.org/10.3390/iocps2021-11220

    Article  Google Scholar 

  20. Dispenza C, Sabatino MA, Niconov A, Chmielewska D, Spadaro G (2012) E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles. Radiat Phys Chem 81(9):1456–1459. https://doi.org/10.1016/j.radphyschem.2011.11.043

    Article  CAS  Google Scholar 

  21. Mazied NA, Ismail SA, Abou Taleb MF (2009) Radiation synthesis of poly[(dimethylaminoethyl methacrylate)-co-(ethyleneglycol dimethacrylate)] hydrogels and its application as a carrier for anticancer delivery. Radiat Phys Chem 78(11):899–905. https://doi.org/10.1016/j.radphyschem.2009.06.016

    Article  CAS  Google Scholar 

  22. Singh B, Rajneesh R (2018) Gamma radiation synthesis and characterization of gentamicin loaded polysaccharide gum based hydrogel wound dressings. J Drug Deliv Sci Technol 47:200–208. https://doi.org/10.1016/j.jddst.2018.07.014

    Article  CAS  Google Scholar 

  23. Demeter M, Virgolici M, Vancea C, Scarisoreanu A, Kaya MGA, Meltzer V (2017) Network structure studies on γ–irradiated collagen–PVP superabsorbent hydrogels. Radiat Phys Chem 131:51–59. https://doi.org/10.1016/j.radphyschem.2016.09.029

    Article  CAS  Google Scholar 

  24. Singh R, Singh A (2022) Radiation synthesis of hydrogels with silver nanoparticles for use as an antimicrobial burn wound dressing. Polym Sci Ser B 64(2):188–197. https://doi.org/10.1134/S1560090422020117

    Article  Google Scholar 

  25. Bae M, Gemeinhart RA, Divan R, Suthar KJ, Mancini DC (2010) Fabrication of poly(ethylene glycol) hydrogel structures for pharmaceutical applications using electron beam and optical lithography. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 28(6):C6P24-C6P29. https://doi.org/10.1116/1.3517716

    Article  CAS  Google Scholar 

  26. Mohamad N, Buang F, MatLazim A, Ahmad N, Martin C, MohdAmin MCI (2017) Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid. J Biomed Mater Res Part B Appl Biomater 105(8):2553–2564. https://doi.org/10.1002/jbm.b.33776

    Article  CAS  Google Scholar 

  27. Hayrabolulu H, Şen M, Çelik G, Kavakli PA (2014) Synthesis of carboxylated locust bean gum hydrogels by ionizing radiation. Radiat Phys Chem 94(1):240–244. https://doi.org/10.1016/j.radphyschem.2013.05.048

    Article  CAS  Google Scholar 

  28. Tomida M, Yabe M, Arakawa Y, Kunioka M (1997) Preparation conditions and properties of biodegradable hydrogels prepared by γ-irradiation of poly(aspartic acid)s synthesized by thermal polycondensation. Polymer (Guildf) 38(11):2791–2795. https://doi.org/10.1016/S0032-3861(97)85616-9

    Article  CAS  Google Scholar 

  29. Maziad NA, Abou El Fadl FI, El-Kelesh NA, El-Hamouly SH, Zeid IF, Gayed HM (2016) Radiation synthesis and characterization of super absorbent hydrogels for controlled release of some agrochemicals. J Radioanal Nucl Chem 307(1):513–521. https://doi.org/10.1007/s10967-015-4201-7

    Article  CAS  Google Scholar 

  30. Fekete T, Borsa J, Takács E, Wojnárovits L (2014) Synthesis of cellulose derivative based superabsorbent hydrogels by radiation induced crosslinking. Cellulose 21(6):4157–4165. https://doi.org/10.1007/s10570-014-0445-6

    Article  CAS  Google Scholar 

  31. Kadłubowski S, Henke A, Ulański P, Rosiak JM (2010) Hydrogels of polyvinylpyrrolidone (PVP) and poly(acrylic acid) (PAA) synthesized by radiation-induced crosslinking of homopolymers. Radiat Phys Chem 79(3):261–266. https://doi.org/10.1016/j.radphyschem.2009.08.030

    Article  CAS  Google Scholar 

  32. Demeter M et al (2019) E-beam processing of collagen-poly(N-vinyl-2-pyrrolidone) double-network superabsorbent hydrogels: structural and rheological investigations. Macromol Res 27(3):255–267. https://doi.org/10.1007/s13233-019-7041-4

    Article  CAS  Google Scholar 

  33. González-Gómez R, Ortega A, Lazo LM, Burillo G (2014) Retention of heavy metal ions on comb-type hydrogels based on acrylic acid and 4-vinylpyridine, synthesized by gamma radiation. Radiat Phys Chem 102:117–123. https://doi.org/10.1016/j.radphyschem.2014.04.026

    Article  CAS  Google Scholar 

  34. El Salmawi KM, Ibrahim SM (2011) Characterization of superabsorbent carboxymethylcellulose/clay hydrogel prepared by electron beam irradiation. Macromol Res 19(10):1029–1034. https://doi.org/10.1007/s13233-011-1006-6

    Article  CAS  Google Scholar 

  35. Cataldo F, Ursini O, Lilla E, Angelini G (2008) Radiation-induced crosslinking of collagen gelatin into a stable hydrogel. J Radioanal Nucl Chem 275(1):125–131. https://doi.org/10.1007/s10967-007-7003-8

    Article  CAS  Google Scholar 

  36. Ishak WHW, Ahmad I, Ramli S, Amin MCIM (2018) Gamma irradiation-assisted synthesis of cellulose nanocrystal-reinforced gelatin hydrogels. Nanomaterials 8(10):1–13. https://doi.org/10.3390/nano8100749

    Article  CAS  Google Scholar 

  37. Alcântara MTS et al (2012) Influence of dissolution processing of PVA blends on the characteristics of their hydrogels synthesized by radiation-Part I: gel fraction, swelling, and mechanical properties. Radiat Phys Chem 81(9):1465–1470. https://doi.org/10.1016/j.radphyschem.2012.01.048

    Article  CAS  Google Scholar 

  38. Park M, Kim BS, Shin HK, Park SJ, Kim HY (2013) Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation. Mater Sci Eng C 33(8):5051–5057. https://doi.org/10.1016/j.msec.2013.08.032

    Article  CAS  Google Scholar 

  39. Safrany WL (2003) First steps in radiation-induced hydrogelsynthesis: radical formation and oligomerization in dilute aqueous N-isopropylacrylamide solutions. Radiat Phys Chem 67:707–715

    Article  CAS  Google Scholar 

  40. Saif MJ, Naveed M, Asif HM, Akhtar R (2018) Irradiation applications for polymer nano-composites: a state-of-the-art review. J Ind Eng Chem 60:218–236. https://doi.org/10.1016/j.jiec.2017.11.009

    Article  CAS  Google Scholar 

  41. Nghiep TD, Minh DTN, Cong NT (2010) Formation and characterization of a hydrophilic polymer hydrogel under gamma irradiation. J Radioanal Nucl Chem 285(3):719–721. https://doi.org/10.1007/s10967-010-0618-1

    Article  CAS  Google Scholar 

  42. Clough RL (2001) High-energy radiation and polymers: A review of commercial processes and emerging applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 185(1–4):8–33. https://doi.org/10.1016/S0168-583X(01)00966-1

    Article  CAS  Google Scholar 

  43. Giammona G, Pitarresi G, Cavallaro G, Spadaro G (1999) New biodegradable hydrogels based on an acryloylated polyaspartamide cross-linked by gamma irradiation. J Biomater Sci Polym Ed 10(9):969–987. https://doi.org/10.1163/156856299X00568

    Article  CAS  PubMed  Google Scholar 

  44. Krklješ A, Nedeljković JM, Kacarevic-Popovic ZM (2007) Fabrication of Ag-PVA hydrogel nanocomposite by γ-irradiation. Polym Bull 58(1):271–279. https://doi.org/10.1007/s00289-006-0593-4

    Article  CAS  Google Scholar 

  45. Goganian AM, Hamishehkar H, Arsalani N, Khiabani HK (2015) Microwave-promoted synthesis of smart superporous hydrogel for the development of gastroretentive drug delivery system. Adv Polym Technol 34(2):1–9. https://doi.org/10.1002/adv.21490

    Article  CAS  Google Scholar 

  46. Abdel Ghaffar AM, El-Arnaouty MB, Abdel Baky AA, Shama SA (2020) Radiation synthesis of carboxymethyl cellulose hydrogels for removal of organic contaminants from its aqueous solution. J Vinyl Addit Technol 26(3):362–369. https://doi.org/10.1002/vnl.21751

    Article  CAS  Google Scholar 

  47. Naikwadi AT, Sharma BK, Bhatt KD, Mahanwar PA (2022) Gamma radiation processed polymeric materials for high performance applications: a review. Front Chem 10(March):1–15. https://doi.org/10.3389/fchem.2022.837111

    Article  CAS  Google Scholar 

  48. Licea-Claveríe A, Salgado-Rodríguez R, Lugo-Medina E, Arndt KF (2008) Incorporation of acid polymethacrylates into temperature sensitive hydrogels using electron beam irradiation. Polym Bull 60(5):701–712. https://doi.org/10.1007/s00289-008-0898-6

    Article  CAS  Google Scholar 

  49. Güven O (2021) Applied sciences radiation-assisted synthesis of polymer-based nanomaterials

  50. Li R, Wu G (2019) Preparation of polysaccharide-based hydrogels via radiation technique. Elsevier, New York

    Google Scholar 

  51. Khozemy EE, Nasef SM, Mohamed TM (2020) Radiation synthesis of superabsorbent hydrogel (wheat flour/acrylamide) for removal of mercury and lead ions from waste solutions. J Inorg Organomet Polym Mater 30(5):1669–1685. https://doi.org/10.1007/s10904-019-01350-6

    Article  CAS  Google Scholar 

  52. Rosiak JM et al (2003) Nano-, micro- and macroscopic hydrogels synthesized by radiation technique. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 208(1–4):325–330. https://doi.org/10.1016/S0168-583X(03)00627-X

    Article  CAS  Google Scholar 

  53. Sánchez-Moreno VE et al (2020) Synthesis of inulin hydrogels by electron beam irradiation: physical, vibrational spectroscopic and thermal characterization and arsenic removal as a possible application. J Polym Res 27(7):5–7. https://doi.org/10.1007/s10965-020-02159-5

    Article  CAS  Google Scholar 

  54. Nho YC, Lim YM, Gwon HJ, Choi EK (2009) Preparation and characterization of PVA/PVP/glycerin/antibacterial agent hydrogels using γ-irradiation followed by freeze-thawing. Korean J Chem Eng 26(6):1675–1678. https://doi.org/10.1007/s11814-009-0231-6

    Article  CAS  Google Scholar 

  55. Garg S, Bal T, Panpalia SG, Rajora AD, Ghosh BD (2021) Preparation and characterization of microwave irradiated pH-sensitive polyacrylamide grafted flax seed mucilage graft copolymeric hydrogel (PFLSM-g-PAM-cl-MBA) and its evaluation as effective polymeric scaffold. Sustain Chem Pharm 22(3):100479. https://doi.org/10.1016/j.scp.2021.100479

    Article  CAS  Google Scholar 

  56. Hong TT, Okabe H, Hidaka Y, Omoldi BA, Hara K (2019) Radiation induced modified CMC-based hydrogel with enhanced reusability for heavy metal ions adsorption. Polymer (Guildf) 181(8):121772. https://doi.org/10.1016/j.polymer.2019.121772

    Article  CAS  Google Scholar 

  57. Sorour M, El-Sayed M, El Moneem NA, Talaat HA, Shalaan H, El Marsafy S (2013) Characterization of hydrogel synthesized from natural polysaccharides blend grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques. Starch/Staerke 65(1–2):172–178. https://doi.org/10.1002/star.201200108

    Article  CAS  Google Scholar 

  58. El-Arnaouty MB, Abdel Ghaffar AM, Abdel Baky AAK, Shama SA (2019) Radiation synthesis of hydrogels based on carboxymethyl cellulose and its application in removal of pollutants from wastewater. J Vinyl Addit Technol 25:E35–E43. https://doi.org/10.1002/vnl.21614

    Article  CAS  Google Scholar 

  59. Karadaǧ E, Üzüm ÖB, Saraydin D, Güven O (2006) Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions. Mater Des 27(7):576–584. https://doi.org/10.1016/j.matdes.2004.11.019

    Article  CAS  Google Scholar 

  60. Choi SG et al (2013) Topical treatment of the buccal mucosa and wounded skin in rats with a triamcinolone acetonide-loaded hydrogel prepared using an electron beam. Int J Pharm 447(1–2):102–108. https://doi.org/10.1016/j.ijpharm.2013.02.053

    Article  CAS  PubMed  Google Scholar 

  61. Şahiner N, Çelikbiçak Ö, Malci S, Kantoǧlu Ö, Salih B (2006) Characterization of poly(N-(hydroxymethyl)methacrylamide-ATU) hydrogels synthesized by γ radiation. J Appl Polym Sci 99(4):1657–1664. https://doi.org/10.1002/app.22462

    Article  CAS  Google Scholar 

  62. Francis S, Mitra D, Dhanawade BR, Varshney L, Sabharwal S (2009) Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels. Radiat Phys Chem 78(11):951–953. https://doi.org/10.1016/j.radphyschem.2009.07.020

    Article  CAS  Google Scholar 

  63. Zhang X, Xu L, Huang X, Wei S, Zhai M (2012) Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ-irradiation. J Biomed Mater Res Part A 100 A(11):2960–2969. https://doi.org/10.1002/jbm.a.34243

    Article  CAS  Google Scholar 

  64. Wan Ishak WH, Rosli NA, Ahmad I, Ramli S, Mohd Amin MCI (2021) Drug delivery and in vitro biocompatibility studies of gelatin-nanocellulose smart hydrogels cross-linked with gamma radiation. J Mater Res Technol 15:7145–7157. https://doi.org/10.1016/j.jmrt.2021.11.095

    Article  CAS  Google Scholar 

  65. Liu P, Peng J, Li J, Wu J (2005) Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiat Phys Chem 72(5):635–638. https://doi.org/10.1016/j.radphyschem.2004.03.090

    Article  CAS  Google Scholar 

  66. Ghaed Rahmati H, Frounchi M, Dadbin S (2022) Piezoelectric behavior of Gamma-radiated nanocomposite hydrogel based on PVP-PEG-BaTiO3. Mater Sci Eng B Solid-State Mater Adv Technol 276(2):115535. https://doi.org/10.1016/j.mseb.2021.115535

    Article  CAS  Google Scholar 

  67. AbdEl-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2012) Removal of some pesticides from aqueous solutions using PVP/(AAc-co-Sty) hydrogels prepared by gamma radiation. J Macromol Sci Part A Pure Appl Chem 49(10):814–827. https://doi.org/10.1080/10601325.2012.714325

    Article  CAS  Google Scholar 

  68. Henley EM, Dash JG (2012) Electromagnetic waves. Phys Around US 16(4):253–268. https://doi.org/10.1142/9789814350648_0016

    Article  Google Scholar 

  69. Hakeem KR (2015) Crop production and global environmental issues

  70. Mohamady Ghobashy M, Awad A, Elhady MA, Elbarbary AM (2017) Silver rubber-hydrogel nanocomposite as pH-sensitive prepared by gamma radiation: Part I. Cogent Chem 3(1):1328770. https://doi.org/10.1080/23312009.2017.1328770

    Article  CAS  Google Scholar 

  71. Abdel-Ghaffar AM (2023) Radiation synthesis and modification of biopolymers and polymeric composites for biomedical applications. Polym Compos 31:25. https://doi.org/10.1177/09673911231166636

    Article  CAS  Google Scholar 

  72. Gwon HJ, Lim YM, Nho YC, Baik SH (2010) Humectants effect on aqueous fluids absorption of γ-irradiated PVA hydrogel followed by freeze thawing. Radiat Phys Chem 79(5):650–653. https://doi.org/10.1016/j.radphyschem.2009.12.011

    Article  CAS  Google Scholar 

  73. El-damhougy TK, Ahmed ASI, Gaber GA, Mazied NA, Bassioni G (2021) Radiation synthesis for a highly sensitive colorimetric hydrogel sensor-based p(AAc/AMPS)-TA for metal ion detection. Results Mater 9(1):100169. https://doi.org/10.1016/j.rinma.2021.100169

    Article  CAS  Google Scholar 

  74. Hydrogels A (2020) pH-responsive gamma-irradiated poly(acrylic acid)-cellulose-nanocrystal-reinforced hydrogels

  75. Bhuyan MM, Okabe H, Hidaka Y, Dafader NC, Rahman N, Hara K (2018) Synthesis of pectin-N,N-dimethyl acrylamide hydrogel by gamma radiation and application in drug delivery (in vitro). J Macromol Sci Part A Pure Appl Chem 55(4):369–376. https://doi.org/10.1080/10601325.2018.1442177

    Article  CAS  Google Scholar 

  76. Krstic J et al (2014) In vitro silver ion release kinetics from nanosilver/poly(vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131(11):1–14. https://doi.org/10.1002/app.40321

    Article  CAS  Google Scholar 

  77. Afroz S, Afrose F, Alam AKMM, Khan RA, Alam MA (2019) Synthesis and characterization of polyethylene oxide (PEO)—N,N-dimethylacrylamide (DMA) hydrogel by gamma radiation. Adv Compos Hybrid Mater 2(1):133–141. https://doi.org/10.1007/s42114-018-0058-x

    Article  CAS  Google Scholar 

  78. Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng C 33(8):4816–4824. https://doi.org/10.1016/j.msec.2013.07.044

    Article  CAS  Google Scholar 

  79. Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2016) Synthesis, characterization and properties of radiation-induced Starch/(EG-co-MAA) hydrogels. Arab J Chem 9:S1627–S1635. https://doi.org/10.1016/j.arabjc.2012.04.022

    Article  CAS  Google Scholar 

  80. Bhuyan MM et al (2016) Synthesis of potato starch-acrylic-acid hydrogels by gamma radiation and their application in dye adsorption. Int J Polym Sci. https://doi.org/10.1155/2016/9867859

    Article  Google Scholar 

  81. Nizam El-Din HM, Abd Alla SG, El-Naggar AWM (2007) Radiation synthesis and characterization of hydrogels composed of poly(vinyl alcohol) and acrylamide mixtures. J Macromol Sci Part A Pure Appl Chem 44(1):47–54. https://doi.org/10.1080/10601320601044450

    Article  CAS  Google Scholar 

  82. Spasojevic J, Radosavljevic A, Krstic J, Mitric M, Popovic ZR (2015) Structural characteristics and bonding environment of Ag nanoparticles synthesized by gamma irradiation within thermo-responsive poly(n-isopropylacrylamide) hydrogel. Polym Compos 38:1014–1026

    Article  Google Scholar 

  83. Boonkaew B et al (2014) Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: single-step production with gamma irradiation creates silver nanoparticles and radical polymerization. J Pharm Sci 103(10):3244–3253. https://doi.org/10.1002/jps.24095

    Article  CAS  PubMed  Google Scholar 

  84. Zakurdaeva OA, Nesterov SV, Feldman VI (2004) Radiation chemical synthesis of polyethylene oxide hydrogel containing DCH18C6 crown ether: a new approach. J Radioanal Nucl Chem 261(2):245–248. https://doi.org/10.1023/B:JRNC.0000034854.60892.d4

    Article  CAS  Google Scholar 

  85. Illescas J, Burillo G (2009) pH-and temperature-responsive behavior of comb-type graft hydrogels of poly(acrylic acid) synthesized using gamma radiation. Macromol Mater Eng 294(6–7):414–421. https://doi.org/10.1002/mame.200900006

    Article  CAS  Google Scholar 

  86. El-Mohdy HLA (2014) Radiation initiated synthesis of 2-acrylamidoglycolic acid grafted carboxymethyl cellulose as ph-sensitive hydrogel. Polym Eng Sci 54:2753–2761

    Article  Google Scholar 

  87. Karadag E, Saraydin D, Sahiner N, Güven O (2001) Radiation induced acrylamide/citric acid hydrogels and their swelling behaviors. J Macromol Sci Pure Appl Chem 38 A(11):1105–1121. https://doi.org/10.1081/MA-100107132

    Article  Google Scholar 

  88. Mahmoud GA, Abdel-Aal SE, Badway NA, Abo Farha SA, Alshafei EA (2014) Radiation synthesis and characterization of starch-based hydrogels for removal of acid dye. Starch/Staerke 66(3–4):400–408. https://doi.org/10.1002/star.201300117

    Article  CAS  Google Scholar 

  89. Tinoco D, Ortega A, Burillo G, Islas L, García-Uriostegui L (2018) Different hydrogel architectures synthesized by gamma radiation based on chitosan and N,N-dimethylacrylamide. MRS Commun 8(2):617–623. https://doi.org/10.1557/mrc.2018.78

    Article  CAS  Google Scholar 

  90. Jabbari E, Nozari S (2000) Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution. Eur Polym J 36(12):2685–2692. https://doi.org/10.1016/S0014-3057(00)00044-6

    Article  CAS  Google Scholar 

  91. Abd Alla SG, Nizam El-Din HM, El-Naggar AWM (2007) Structure and swelling-release behaviour of poly(vinyl pyrrolidone) (PVP) and acrylic acid (AAc) copolymer hydrogels prepared by gamma irradiation. Eur Polym J 43(7):2987–2998. https://doi.org/10.1016/j.eurpolymj.2007.04.016

    Article  CAS  Google Scholar 

  92. Nizam El-Din HMM, El-Naggar AWM (2012) Radiation synthesis of acrylic acid/polyethyleneimine interpenetrating polymer networks (IPNs) hydrogels and its application as a carrier of atorvastatin drug for controlling cholesterol. Eur Polym J 48(9):1632–1640. https://doi.org/10.1016/j.eurpolymj.2012.06.014

    Article  CAS  Google Scholar 

  93. Mun GA, Nurkeeva ZS, Khutoryanskiy VV, Yermukhambetova BB, Koblanov SM, Arkhipova IA (2003) Radiation synthesis of hydrogels based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol and their interaction with poly(acrylic acid). Radiat Phys Chem 67(6):745–749. https://doi.org/10.1016/S0969-806X(03)00150-6

    Article  CAS  Google Scholar 

  94. Savaş H, Güven O (2002) Gelation, swelling and water vapor permeability behavior of radiation synthesized poly(ethylene oxide) hydrogels. Radiat Phys Chem 64(1):35–40. https://doi.org/10.1016/S0969-806X(01)00442-X

    Article  Google Scholar 

  95. Zhang C, Easteal AJ (2003) Study of poly(acrylamide-co-2-acrylamido-2-methylpropane sulfonic acid) hydrogels made using gamma radiation initiation. J Appl Polym Sci 89(5):1322–1330. https://doi.org/10.1002/app.12246

    Article  CAS  Google Scholar 

  96. El-Nesr EM, Raafat AI, Nasef SM, Soliman EA, Hegazy E-SA (2014) Radiation synthesis and characterization of N,O-carboxymethyl chitosan/poly(vinylpyrrolidone) copolymer hydrogel. Arab J Nucl Sci Appl 47(1):14–27

    Google Scholar 

  97. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym Degrad Stab 107:166–177. https://doi.org/10.1016/j.polymdegradstab.2014.05.014

    Article  CAS  Google Scholar 

  98. Cai H, Zhang ZP, Ping CS, Bing LH, Xiao XZ (2005) Synthesis and characterization of thermo- and pH-sensitive hydrogels based on Chitosan-grafted N-isopropylacrylamide via γ-radiation. Radiat Phys Chem 74(1):26–30. https://doi.org/10.1016/j.radphyschem.2004.10.007

    Article  CAS  Google Scholar 

  99. El-Hag Ali ASAA (2011) Swelling and drug release profile of poly(2-ethyl-2- oxazoline)-based hydrogels prepared by gamma radiation-induced copolymerization. J Appl Polym Sci 120:3071–3077

    Article  CAS  Google Scholar 

  100. El-HagAli A, AbdEl-Rehim HA, Hegazy ESA, Ghobashy MM (2006) Synthesis and electrical response of acrylic acid/vinyl sulfonic acid hydrogels prepared by γ-irradiation. Radiat Phys Chem 75(9):1041–1046. https://doi.org/10.1016/j.radphyschem.2005.05.022

    Article  CAS  Google Scholar 

  101. Salmawi KME, El-Naggar AA, Ibrahim SM (2018) Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/clay superabsorbent hydrogel. Adv Polym Technol 37(2):515–521. https://doi.org/10.1002/adv.21690

    Article  CAS  Google Scholar 

  102. Moghaddam RH, Dadfarnia S, Shabani AMH, Tavakol M (2019) Synthesis of composite hydrogel of glutamic acid, gum tragacanth, and anionic polyacrylamide by electron beam irradiation for uranium (VI) removal from aqueous samples: equilibrium, kinetics, and thermodynamic studies. Carbohydr Polym 206(2018):352–361. https://doi.org/10.1016/j.carbpol.2018.10.030

    Article  CAS  PubMed  Google Scholar 

  103. Erizal R (2012) Synthesis of poly(acrylamide-co-acrylic acid)-starch based superabsorbent hydrogels by gamma radiation: Study its swelling behavior. Indones J Chem 12(2):113–118. https://doi.org/10.22146/ijc.21349

    Article  CAS  Google Scholar 

  104. Bustamante-Torres M, Pino-Ramos VH, Romero-Fierro D, Hidalgo-Bonilla SP, Magaña H, Bucio E (2021) Synthesis and antimicrobial properties of highly cross-linked pH-sensitive hydrogels through Gamma radiation. Polymers (Basel) 13(14):1–16. https://doi.org/10.3390/polym13142223

    Article  CAS  Google Scholar 

  105. Yang M, Song H, Zhu C, He S (2007) Radiation synthesis and characterization of polyacrylic acid hydrogels. Nucl Sci Tech 18(2):82–85. https://doi.org/10.1016/S1001-8042(07)60024-4

    Article  CAS  Google Scholar 

  106. Tomar RS, Gupta I, Singhal R, Nagpal AK (2007) Synthesis of poly(acrylamide-co-acrylic acid)-based super-absorbent hydrogels by gamma radiation: study of swelling behaviour and network parameters. Des Monomers Polym 10(1):49–66. https://doi.org/10.1163/156855507779763685

    Article  CAS  Google Scholar 

  107. Ghobashy MM, Elbarbary AM, Hegazy DE (2021) Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery. Carbohydr Polym 263(1):117975. https://doi.org/10.1016/j.carbpol.2021.117975

    Article  CAS  PubMed  Google Scholar 

  108. Bhuyan MM, Adala OB, Okabe H, Hidaka Y, Hara K (2019) Selective adsorption of trivalent metal ions from multielement solution by using gamma radiation-induced pectin-acrylamide-(2-Acrylamido-2-methyl-1-propanesulfonic acid) hydrogel. J Environ Chem Eng 7(1):102844. https://doi.org/10.1016/j.jece.2018.102844

    Article  CAS  Google Scholar 

  109. Saraydin D, Karadağ E, Sahiner N, GüVen O (2002) Incorporation of malonic acid into acrylamide hydrogen by radiation technique and its effect on swelling behavior. J Mater Sci 37(15):3217–3223. https://doi.org/10.1023/A:1016170630750

    Article  CAS  Google Scholar 

  110. Khozemy EE, Nasef SM, Mahmoud GA (2018) Synthesis and characterization of antimicrobial nanocomposite hydrogel based on wheat flour and poly(vinyl alcohol) using γ-irradiation. Adv Polym Technol 37(8):3252–3261. https://doi.org/10.1002/adv.22094

    Article  CAS  Google Scholar 

  111. Monir TSB, Afroz S, Khan RA, Miah MY, Takafuji M, Alam MA (2019) Ph-sensitive hydrogel from polyethylene oxide and acrylic acid by gamma radiation. J Compos Sci. https://doi.org/10.3390/jcs3020058

    Article  Google Scholar 

  112. Hegazy ESA, Abd El-Aal SE, Abou Taleb MF, Dessouki AM (2004) Radiation synthesis and characterization of poly(n-vinyl-2-pyrrolidone/acrylic acid) and poly(N-vinyl-2-pyrrolidone/acrylamide) hydrogels for some metal-ion separation. J Appl Polym Sci 92(4):2642–2652. https://doi.org/10.1002/app.20208

    Article  CAS  Google Scholar 

  113. Olpan D, Duran S, Güven O (2002) Synthesis and properties of radiation-induced acrylamide-acrylic acid hydrogels. J Appl Polym Sci 86(14):3570–3580. https://doi.org/10.1002/app.11176

    Article  CAS  Google Scholar 

  114. Bardajee GR, Pourjavadi A, Soleyman R, Sheikh N (2010) Gamma irradiation mediated synthesis of a new superabsorbent hydrogel network based on poly(acrylic acid) grafted onto salep. J Iran Chem Soc 7(3):652–662. https://doi.org/10.1007/bf03246054

    Article  CAS  Google Scholar 

  115. Abd El-Mohdy HL, Hegazy EA, El-Nesr EM, El-Wahab MA (2013) Metal sorption behavior of poly(N-vinyl-2-pyrrolidone)/(acrylic acid-co-styrene) hydrogels synthesized by gamma radiation. J Environ Chem Eng 1(3):328–338. https://doi.org/10.1016/j.jece.2013.05.013

    Article  CAS  Google Scholar 

  116. Gad YH (2008) Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat Phys Chem 77(9):1101–1107. https://doi.org/10.1016/j.radphyschem.2008.05.002

    Article  CAS  Google Scholar 

  117. El-Arnaouty MB, AbdelGhaffar AM, Aboulfotouh ME, Taher NH, Taha AA (2015) Radiation synthesis and characterization of poly(butyl methacrylate/acrylamide) copolymeric hydrogels and heparin controlled drug release. Polym Bull 72(11):2739–2756. https://doi.org/10.1007/s00289-015-1433-1

    Article  CAS  Google Scholar 

  118. Singh R, Singh D (2012) Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing. J Mater Sci Mater Med 23(11):2649–2658. https://doi.org/10.1007/s10856-012-4730-3

    Article  CAS  PubMed  Google Scholar 

  119. Plungpongpan K, Koyanukkul K, Kaewvilai A, Nootsuwan N, Kewsuwan P, Laobuthee A (2013) Preparation of PVP/MHEC blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energy Procedia 34(Scheme 1):775–781. https://doi.org/10.1016/j.egypro.2013.06.813

    Article  CAS  Google Scholar 

  120. Swantomo D, Rochmadi K, Basuki KT, Sudiyo R (2013) Synthesis and characterization of graft copolymer rice straw cellulose-acrylamide hydrogels using Gamma irradiation. Atom Indones 39(2):57–64. https://doi.org/10.17146/aij.2013.232

    Article  Google Scholar 

  121. El-Arnaouty MB (2010) Radiation synthesis and characterization study of imprinted hydrogels for metal ion adsorption. Polym Plast Technol Eng 49(10):963–971. https://doi.org/10.1080/03602559.2010.482071

    Article  CAS  Google Scholar 

  122. El-Arnaouty MB, Eid M, Mansour HH (2021) In vivo study of silver nanoparticles entrapped poly(N-vinyl pyrrolidone/dextran) hydrogel synthesized by gamma radiation on the antitumor activity of doxorubicin. J Inorg Organomet Polym Mater 31(6):2700–2710. https://doi.org/10.1007/s10904-021-01882-w

    Article  CAS  Google Scholar 

  123. Maolin Z, Hongfei H, Yoshii F, Makuuchi K (2000) Effect of kappa-carrageenan on the properties of poly(N-vinyl pyrrolidone)/kappa-carrageenan blend hydrogel synthesized by γ-radiation technology. Radiat Phys Chem 57(3–6):459–464. https://doi.org/10.1016/S0969-806X(99)00415-6

    Article  CAS  Google Scholar 

  124. Eid M (2011) Gamma radiation synthesis and characterization of starch based polyelectrolyte hydrogels loaded silver nanoparticles. J Inorg Organomet Polym Mater 21(2):297–305. https://doi.org/10.1007/s10904-010-9448-4

    Article  CAS  Google Scholar 

  125. Bardajee GR, Hooshyar Z, Zehtabi F, Pourjavadi A (2012) A superabsorbent hydrogel network based on poly ((2-dimethylaminoethyl) methacrylate) and sodium alginate obtained by γ-radiation: Synthesis and characterization. Iran Polym J Engl Ed 21(12):829–836. https://doi.org/10.1007/s13726-012-0089-z

    Article  CAS  Google Scholar 

  126. Mohamed AA, Mahmoud GA, ElDin MRE, Saad EA (2020) Synthesis and properties of (Gum acacia/polyacryamide/SiO2) magnetic hydrogel nanocomposite prepared by gamma irradiation. Polym Technol Mater 59(4):357–370. https://doi.org/10.1080/25740881.2019.1647240

    Article  CAS  Google Scholar 

  127. El-Neser EM (2005) Effect of chemical structure on the properties of some hydrogels prepared by using gamma radiation polymerization. Polym Adv Technol 16(6):489–494. https://doi.org/10.1002/pat.607

    Article  CAS  Google Scholar 

  128. López-Barriguete JE, Bucio E (2017) Temperature-responsive copolymeric hydrogel systems synthetized by ionizing radiation. Radiat Phys Chem 135(January):113–120. https://doi.org/10.1016/j.radphyschem.2017.01.043

    Article  CAS  Google Scholar 

  129. Tuncer REK (2000) Radiation synthesis and uranyl-ion adsorption of poly (2-hydroxyethyl methacrylate/maleic acid) hydrogels. J Polym Sci Part A Polym Chem 39:277–283

    Google Scholar 

  130. Jabbari E, Karbasi S (2004) Swelling behavior and cell viability of dehydrothermally crosslinked poly(vinyl alcohol) hydrogel grafted with N-vinyl pyrrolidone or acrylic acid using γ-radiation. J Appl Polym Sci 91(5):2862–2868. https://doi.org/10.1002/app.13494

    Article  CAS  Google Scholar 

  131. El-Arnaouty MB, Eid M, AbdelGhaffar AM (2015) Radiation synthesis of stimuli responsive micro-porous hydrogels for controlled drug release of aspirin. Polym Plast Technol Eng 54(12):1215–1222. https://doi.org/10.1080/03602559.2014.1003229

    Article  CAS  Google Scholar 

  132. Mahmoud GA, Hegazy EA, Badway NA, Salam KMM, Elbakery SM (2016) Radiation synthesis of imprinted hydrogels for selective metal ions adsorption. Desalin Water Treat 57(35):16540–16551. https://doi.org/10.1080/19443994.2015.1079256

    Article  CAS  Google Scholar 

  133. Goel NK, Kumar V, Bhardwaj YK, Chaudhari CV, Dubey KA, Sabharwal S (2009) Swelling response of radiation synthesized 2-hydroxyethylmethacrylate-co- [2-(methacryloyloxy)ethyl] trimethylammonium chloride hydrogels under various in vitro conditions. J Biomater Sci Polym Ed 20(5–6):785–805. https://doi.org/10.1163/156856209X426916

    Article  CAS  PubMed  Google Scholar 

  134. Othman AM, Ghobashy MM, Abd El-Sattar NEA (2021) Radiation synthesis of porous calcium silicate aerogel derived from polyacrylamide hydrogel as thermal insulator. J Sol-Gel Sci Technol 98(3):593–604. https://doi.org/10.1007/s10971-021-05534-w

    Article  CAS  Google Scholar 

  135. Kaetsu I, Uchida K, Morita Y, Okubo M (1992) Synthesis of electro-responsive hydrogels by radiation polymerization of sodium acrylate. Int J Radiat Appl Instrum 40(2):157–160. https://doi.org/10.1016/1359-0197(92)90074-P

    Article  CAS  Google Scholar 

  136. Ning L, Min Y, Maolin Z, Jiuqiang L, Hongfei H (2001) Radiation synthesis and characterization of polyDMAEMA hydrogel. Radiat Phys Chem 61(1):69–73. https://doi.org/10.1016/S0969-806X(00)00373-X

    Article  Google Scholar 

  137. Wach RA, Adamus-Wlodarczyk A, Olejnik AK, Matusiak M, Tranquilan-Aranilla C, Ulanski P (2020) Carboxymethylchitosan hydrogel manufactured by radiation-induced crosslinking as potential nerve regeneration guide scaffold. React Funct Polym 152(April):104588. https://doi.org/10.1016/j.reactfunctpolym.2020.104588

    Article  CAS  Google Scholar 

  138. AbdEl-Mohdy HL (2007) Water sorption behavior of CMC/PAM hydrogels prepared by γ-irradiation and release of potassium nitrate as agrochemical. React Funct Polym 67(10):1094–1102. https://doi.org/10.1016/j.reactfunctpolym.2007.07.002

    Article  CAS  Google Scholar 

  139. El-Din HMN, El-Naggar AWM, El Fadle FIA (2013) Radiation synthesis of ph-sensitive hydrogels from carboxymethyl cellulose/poly(ethylene oxide) blends as drug delivery systems. Int J Polym Mater Polym Biomater 62(13):711–718. https://doi.org/10.1080/00914037.2013.769231

    Article  CAS  Google Scholar 

  140. Maziad NA, El-Hamouly S, Zied E, El Kelani TA, Nasef NR (2015) Radiation preparation of smart hydrogel has antimicrobial properties for controlled release of ciprofloxacin in drug delivery systems. Asian J Pharm Clin Res 8(3):193–200

    CAS  Google Scholar 

  141. Wang M, Xu L, Zhai M, Peng J, Li J, Wei G (2008) γ-ray radiation-induced synthesis and Fe(III) ion adsorption of carboxymethylated chitosan hydrogels. Carbohydr Polym 74(3):498–503. https://doi.org/10.1016/j.carbpol.2008.04.008

    Article  CAS  Google Scholar 

  142. Zhao L, Gwon HJ, Lim YM, Nho YC, Kim SY (2014) Hyaluronic acid/chondroitin sulfate-based hydrogel prepared by gamma irradiation technique. Carbohydr Polym 102(1):598–605. https://doi.org/10.1016/j.carbpol.2013.11.048

    Article  CAS  PubMed  Google Scholar 

  143. Park KR, Nho YC (2003) Preparation and characterization by radiation of poly(vinyl alcohol) and poly(N-vinylpyrrolidone) hydrogels containing aloe vera. J Appl Polym Sci 90(6):1477–1485. https://doi.org/10.1002/app.12656

    Article  CAS  Google Scholar 

  144. Spasojević J et al (2015) Dual responsive antibacterial Ag-poly(N-isopropylacrylamide/itaconic acid) hydrogel nanocomposites synthesized by gamma irradiation. Eur Polym J 69:168–185. https://doi.org/10.1016/j.eurpolymj.2015.06.008

    Article  CAS  Google Scholar 

  145. Singh D, Singh A, Singh R (2015) Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing. J Biomater Sci Polym Ed 26(17):1269–1285. https://doi.org/10.1080/09205063.2015.1087366

    Article  CAS  PubMed  Google Scholar 

  146. Kuljanin-Jakovljević J, Radosavljević AN, Spasojević JP, Carević MV, Mitrić MN, Kačarević-Popović ZM (2017) Gamma irradiation induced in situ synthesis of lead sulfide nanoparticles in poly(vinyl alcohol) hydrogel. Radiat Phys Chem 130:282–290. https://doi.org/10.1016/j.radphyschem.2016.09.003

    Article  CAS  Google Scholar 

  147. Kumaraswamy S, Babaladimath G, Badalamoole V, Mallaiah SH (2017) Gamma irradiation synthesis and in vitro drug release studies of ZnO/PVA hydrogel nanocomposites. Adv Mater Lett 8(4):546–552. https://doi.org/10.5185/amlett.2017.6819

    Article  CAS  Google Scholar 

  148. Abdel Ghaffar AM, Abou El Fadl FI, El-Sawy NM (2022) Radiation synthesis of polyvinyl alcohol/acrylic acid/magnesium oxide composite hydrogel for removal of boron from its aqueous solution. J Thermoplast Compos Mater 35(7):1022–1040. https://doi.org/10.1177/0892705720925142

    Article  CAS  Google Scholar 

  149. Behnoodfar D, Dadbin S, Frounchi M (2013) PLA microspheres-embedded pva hydrogels prepared by gamma-irradiation and freeze-thaw methods as drug release carriers. Int J Polym Mater Polym Biomater 62(1):28–33. https://doi.org/10.1080/00914037.2011.641648

    Article  CAS  Google Scholar 

  150. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73(3):401–408. https://doi.org/10.1016/j.carbpol.2007.12.008

    Article  CAS  Google Scholar 

  151. Mondino AV, González ME, Romero GR, Smolko EE (1999) Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations. Radiat Phys Chem 55(5–6):723–726. https://doi.org/10.1016/S0969-806X(99)00219-4

    Article  CAS  Google Scholar 

  152. Barleany DR et al (2023) Synthesis and characterization of chitosan/polyvinyl alcohol crosslinked poly(N-isopropylacrylamide) smart hydrogels via γ-radiation. Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.01.366

    Article  Google Scholar 

  153. Zhao L, Mitomo H, Nagasawa N, Yoshii F, Kume T (2003) Radiation synthesis and characteristic of the hydrogels based on carboxymethylated chitin derivatives. Carbohydr Polym 51(2):169–175. https://doi.org/10.1016/S0144-8617(02)00210-2

    Article  CAS  Google Scholar 

  154. Mori H, Hara M (2016) Clusters of neural stem/progenitor cells cultured on a soft poly(vinyl alcohol) hydrogel crosslinked by gamma irradiation. J Biosci Bioeng 121(5):584–590. https://doi.org/10.1016/j.jbiosc.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  155. Nizam El-Din HM, Abou Taleb MF, El-Naggar AWM (2008) Metal sorption and swelling characters of acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266(11):2607–2613. https://doi.org/10.1016/j.nimb.2008.03.215

    Article  CAS  Google Scholar 

  156. Varshney L (2007) Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 255(2):343–349. https://doi.org/10.1016/j.nimb.2006.11.101

    Article  CAS  Google Scholar 

  157. Mahmudi N, Şen M, Rendevski S, Güven O (2007) Radiation synthesis of low swelling acrylamide based hydrogels and determination of average molecular weight between cross-links. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 265(1):375–378. https://doi.org/10.1016/j.nimb.2007.09.007

    Article  CAS  Google Scholar 

  158. Suljovrujic E, Micic M (2015) Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 342:206–214. https://doi.org/10.1016/j.nimb.2014.10.008

    Article  CAS  Google Scholar 

  159. Kumar V, Chaudhari CV, Bhardwaj YK, Goel NK, Sabharwal S (2006) Radiation induced synthesis and swelling characterization of thermo-responsive N-isopropylacrylamide-co-ionic hydrogels. Eur Polym J 42(2):235–246. https://doi.org/10.1016/j.eurpolymj.2005.08.006

    Article  CAS  Google Scholar 

  160. Raafat AI, Araby E, Lotfy S (2012) Enhancement of fibrinolytic enzyme production from Bacillus subtilis via immobilization process onto radiation synthesized starch/dimethylaminoethyl methacrylate hydrogel. Carbohydr Polym 87(2):1369–1374. https://doi.org/10.1016/j.carbpol.2011.09.029

    Article  CAS  Google Scholar 

  161. Abeer MM, Amin MCIM, Lazim AM, Pandey M, Martin C (2014) Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydr Polym 110:505–512. https://doi.org/10.1016/j.carbpol.2014.04.052

    Article  CAS  PubMed  Google Scholar 

  162. Choi HJ, Kunioka M (1995) Preparation conditions and swelling equilibria of hydrogel prepared by γ-irradiation from microbial poly(γ-glutamic acid). Radiat Phys Chem 46(2):175–179. https://doi.org/10.1016/0969-806X(95)00009-M

    Article  CAS  Google Scholar 

  163. Lee J, Macosko CW, Urry DW (2001) Swelling behavior of γ-irradiation cross-linked elastomeric polypentapeptide-based hydrogels. Macromolecules 34(12):4114–4123. https://doi.org/10.1021/ma0015673

    Article  CAS  Google Scholar 

  164. Huglin MB, Zakaria MB (1986) Swelling properties of copolymeric hydrogels prepared by gamma irradiation. J Appl Polym Sci 31(2):457–475. https://doi.org/10.1002/app.1986.070310213

    Article  CAS  Google Scholar 

  165. Mun GA, Nurkeeva ZS, Koblanov SM, Khutoryanskiy VV, Shaikhutdinov EM (2004) Radiation synthesis of polyampholyte hydrogels based on vinyl ether of monoethanolamine and sodium acrylate and their interactions with linear polyelectrolytes. Radiat Phys Chem 71(5):1031–1037. https://doi.org/10.1016/j.radphyschem.2003.11.002

    Article  CAS  Google Scholar 

  166. Dergunov SA, Nam IK, Mun GA, Nurkeeva ZS, Shaikhutdinov EM (2005) Radiation synthesis and characterization of stimuli-sensitive chitosan-polyvinyl pyrrolidone hydrogels. Radiat Phys Chem 72(5):619–623. https://doi.org/10.1016/j.radphyschem.2004.03.011

    Article  CAS  Google Scholar 

  167. Francis S, Kumar M, Varshney L (2004) Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels. Radiat Phys Chem 69(6):481–486. https://doi.org/10.1016/j.radphyschem.2003.09.004

    Article  CAS  Google Scholar 

  168. Yamdej R, Pangza K, Srichana T, Aramwit P (2017) Superior physicochemical and biological properties of poly(vinyl alcohol)/sericin hydrogels fabricated by a non-toxic gamma-irradiation technique. J Bioact Compat Polym 32(1):32–44. https://doi.org/10.1177/0883911516653145

    Article  CAS  Google Scholar 

  169. El-Naggar AA (2016) Radiation synthesis of superabsorbent hydrogels based on carboxymethyl cellulose/sodium alginate for absorbent of heavy metal ions from waste water. J Thermoplast Compos Mater 29(1):16–27. https://doi.org/10.1177/0892705713518786

    Article  CAS  Google Scholar 

  170. Mahmud M, Daik R, Adam Z (2018) Influence of poly(ethylene glycol) on the characteristics of γ radiation-crosslinked poly(vinyl pyrrolidone)-low molecular weight chitosan network hydrogels. Sains Malays 47(6):1189–1197. https://doi.org/10.17576/jsm-2018-4706-14

    Article  CAS  Google Scholar 

  171. Liu P, Zhai M, Li J, Peng J, Wu J (2002) Radiation preparation and swelling behavior of sodium carboxymethyl cellulose hydrogels. Radiat Phys Chem 63(3–6):525–528. https://doi.org/10.1016/S0969-806X(01)00649-1

    Article  CAS  Google Scholar 

  172. Choi HJ, Yang R, Kunioka M (1995) Synthesis and characterization of pH-sensitive and biodegradable hydrogels prepared by γ irradiation using microbial poly(γ-glutamic acid) and poly(ε-lysine). J Appl Polym Sci 58(4):807–814. https://doi.org/10.1002/app.1995.070580414

    Article  CAS  Google Scholar 

  173. Abad LV, Relleve LS, Aranilla CT, Dela Rosa AM (2003) Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Radiat Phys Chem 68(5):901–908. https://doi.org/10.1016/S0969-806X(03)00164-6

    Article  CAS  Google Scholar 

  174. Zaldivar MP, Fernández NG, Peña CG, Paneque MR, Valentín SA (2011) Synthesis and characterization of a new semi-interpenetrating polymer network hydrogel obtained by gamma radiations. J Therm Anal Calorim 106(3):725–730. https://doi.org/10.1007/s10973-011-1707-2

    Article  CAS  Google Scholar 

  175. Qiu J et al (2007) Effect of activated carbon on the properties of carboxymethylcellulose/activated carbon hybrid hydrogels synthesized by γ-radiation technique. Carbohydr Polym 70(2):236–242. https://doi.org/10.1016/j.carbpol.2007.04.001

    Article  CAS  Google Scholar 

  176. Kunioka M, Choi HJ (1995) Properties of biodegradable hydrogels prepared by γ irradiation of microbial poly(ε-lysine) aqueous solutions. J Appl Polym Sci 58(4):801–806. https://doi.org/10.1002/app.1995.070580413

    Article  CAS  Google Scholar 

  177. Kashiwagi M (2012) Electron beam processing system and its application. SEI Tech Rev 75:47–54

    Google Scholar 

  178. Cleland MR, Parks LA (2003) Medium and high-energy electron beam radiation processing equipment for commercial applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 208:74–89. https://doi.org/10.1016/S0168-583X(03)00672-4

    Article  CAS  Google Scholar 

  179. Glass S, Kühnert M, Abel B, Schulze A (2019) Controlled electron-beam synthesis of transparent hydrogels for drug delivery applications. Polymers (Basel) 11:3. https://doi.org/10.3390/polym11030501

    Article  CAS  Google Scholar 

  180. Dawes K, Glover LC, Vroom DA (2007) The effects of electron beam and g-irradiation on polymeric materials. Phys Prop Polym Handb 25:867–887. https://doi.org/10.1007/978-0-387-69002-5_52

    Article  Google Scholar 

  181. Sedlacek O et al (2017) The effect of ionizing radiation on biocompatible polymers: from sterilization to radiolysis and hydrogel formation. Polym Degrad Stab 137:1–10. https://doi.org/10.1016/j.polymdegradstab.2017.01.005

    Article  CAS  Google Scholar 

  182. Shahbazi M, Jäger H, Ahmadi SJ, Lacroix M (2020) Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions. Carbohydr Polym 240(November 2019):116211. https://doi.org/10.1016/j.carbpol.2020.116211

    Article  CAS  PubMed  Google Scholar 

  183. Haryanto A, Singh D, Han SS, Son JH, Kim SC (2015) Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier. Mater Sci Eng C 46:195–201. https://doi.org/10.1016/j.msec.2014.10.028

    Article  CAS  Google Scholar 

  184. Hafezi Moghaddam R, Dadfarnia S, Shabani AMH, Moghaddam ZH, Tavakol M (2019) Electron beam irradiation synthesis of porous and non-porous pectin based hydrogels for a tetracycline drug delivery system. Mater Sci Eng C 102(January):391–404. https://doi.org/10.1016/j.msec.2019.04.071

    Article  CAS  Google Scholar 

  185. Choi J, Pant B, Lee C, Park M, Park SJ, Kim HY (2017) Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique. J Ind Eng Chem 47:41–45. https://doi.org/10.1016/j.jiec.2016.11.014

    Article  CAS  Google Scholar 

  186. Bhunia T, Goswami L, Chattopadhyay D, Bandyopadhyay A (2011) Sustained transdermal release of diltiazem hydrochloride through electron beam irradiated different PVA hydrogel membranes. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 269(16):1822–1828. https://doi.org/10.1016/j.nimb.2011.05.011

    Article  CAS  Google Scholar 

  187. Said HM, Alla SGA, El-Naggar AWM (2004) Synthesis and characterization of novel gels based on carboxymethyl cellulose/acrylic acid prepared by electron beam irradiation. React Funct Polym 61(3):397–404. https://doi.org/10.1016/j.reactfunctpolym.2004.07.002

    Article  CAS  Google Scholar 

  188. Craciun G, Manaila E, Stelescu MD (2016) Electron beam synthesis and characterization of acrylamide/acrylic acid hydrogels using trimethylolpropane trimethacrylate as cross-linker. J Chem. https://doi.org/10.1155/2016/1470965

    Article  Google Scholar 

  189. Senna MM, Mostafa AEKB, Mahdy SR, El-Naggar AWM (2016) Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 386:22–29. https://doi.org/10.1016/j.nimb.2016.09.020

    Article  CAS  Google Scholar 

  190. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym 53(4):439–446. https://doi.org/10.1016/S0144-8617(03)00103-6

    Article  CAS  Google Scholar 

  191. Mohamad N, Mohd Amin MCI, Pandey M, Ahmad N, Rajab NF (2014) Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohydr Polym 114:312–320. https://doi.org/10.1016/j.carbpol.2014.08.025

    Article  CAS  PubMed  Google Scholar 

  192. Ibrahim SM, El-Naggar AA (2013) Preparation of poly(vinyl alcohol)/clay hydrogel through freezing and thawing followed by electron beam irradiation for the treatment of wastewater. J Thermoplast Compos Mater 26(10):1332–1348. https://doi.org/10.1177/0892705712439567

    Article  CAS  Google Scholar 

  193. Xu L, Nagasawa N, Yoshii F, Kume T (2003) Syntheses of hydroxypropyl methylcellulose phthalate hydrogels in Na2CO3 aqueous solutions with electron-beam irradiation. J Appl Polym Sci 89(8):2123–2130. https://doi.org/10.1002/app.12370

    Article  CAS  Google Scholar 

  194. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2004) Radiation synthesis of hydrogels to enhance sandy soils water retention and increase plant performance. J Appl Polym Sci 93(3):1360–1371. https://doi.org/10.1002/app.20571

    Article  CAS  Google Scholar 

  195. Abd El-Rehim HA, Hegazy ESA, Abd El-Mohdy HL (2005) Properties of polyacrylamide-based hydrogels prepared by electron beam irradiation for possible use as bioactive controlled delivery matrices. J Appl Polym Sci 98(3):1262–1270. https://doi.org/10.1002/app.22167

    Article  CAS  Google Scholar 

  196. Branca C et al (2006) Synthesis of polyethylene oxide hydrogels by electron radiation. J Appl Polym Sci 102(1):820–824. https://doi.org/10.1002/app.24238

    Article  CAS  Google Scholar 

  197. Du W et al (2021) Radiation-initiated chitosan-based double network hydrogel: synthesis, characterization, and adsorption of methylene blue. J Appl Polym Sci 138(48):1–14. https://doi.org/10.1002/app.51531

    Article  CAS  Google Scholar 

  198. Hiroki A, Taguchi M (2021) Development of environmentally friendly cellulose derivative-based hydrogels for contact lenses using a radiation crosslinking technique. Appl Sci. https://doi.org/10.3390/app11199168

    Article  Google Scholar 

  199. Dispenza C et al (2011) E-beam irradiation and UV photocrosslinking of microemulsion-laden poly(N-vinyl-2-pyrrolidone) hydrogels for ‘in situ’ encapsulation of volatile hydrophobic compounds. Polym Chem 2(1):192–202. https://doi.org/10.1039/c0py00161a

    Article  CAS  Google Scholar 

  200. Abd El-Rehim HA, Hegazy ESA, Diaa DA (2006) Characterization of super-absorbent material based on carboxymethylcellulose sodium salt prepared by electron beam irradiation. J Macromol Sci Pure Appl Chem 43 A(1):101–113. https://doi.org/10.1080/10601320500406008

    Article  CAS  Google Scholar 

  201. Meinhold D et al (2004) Hydrogel characteristics of electron-beam-immobilized poly(vinylpyrrolidone) films on poly(ethylene terephthalate) supports. Langmuir 20(2):396–401. https://doi.org/10.1021/la0353531

    Article  CAS  PubMed  Google Scholar 

  202. Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB (2000) Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiat Phys Chem 58(1):101–110. https://doi.org/10.1016/S0969-806X(99)00349-7

    Article  CAS  Google Scholar 

  203. Li Y et al (2018) Controlled tuning of lcst based on poly (N-isopropylacrylamide)/hydroxypropyl cellulose temperature-sensitive hydrogel by electron beam pre-radiation method. J Polym Res 25(1):1–12. https://doi.org/10.1007/s10965-017-1398-x

    Article  CAS  Google Scholar 

  204. Šrámková P et al (2022) Electron beam irradiation as a straightforward way to produce tailorable non-biofouling poly(2-methyl-2-oxazoline) hydrogel layers on different substrates. Appl Surf Sci 625(December):2023. https://doi.org/10.1016/j.apsusc.2023.157061

    Article  CAS  Google Scholar 

  205. Kristina Fischer I, Lohmann J, Schmidt E, Blaich TH, Belz C, Thomas AS, Vogelsberg E (2023) Anti-biofouling membranes via hydrogel electron beam modification—a fundamental and applied study. Colloids Surf A Physicochem Eng Asp 4:4

    Google Scholar 

  206. Şener Raman T et al (2023) A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation. Front Chem 10(January):1–12. https://doi.org/10.3389/fchem.2022.1094981

    Article  CAS  Google Scholar 

  207. Sheikh N, Jalili L, Anvari F (2010) A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking. Radiat Phys Chem 79(6):735–739. https://doi.org/10.1016/j.radphyschem.2009.12.013

    Article  CAS  Google Scholar 

  208. Zhao L, Xu L, Mitomo H, Yoshii F (2006) Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydr Polym 64(3):473–480. https://doi.org/10.1016/j.carbpol.2005.12.014

    Article  CAS  Google Scholar 

  209. Tavakol M, Dehshiri S, Vasheghani-Farahani E (2016) Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth. Carbohydr Polym 152:504–509. https://doi.org/10.1016/j.carbpol.2016.07.044

    Article  CAS  PubMed  Google Scholar 

  210. El-Naggar AWM, Alla SGA, Said HM (2006) Temperature and pH responsive behaviours of CMC/AAc hydrogels prepared by electron beam irradiation. Mater Chem Phys 95(1):158–163. https://doi.org/10.1016/j.matchemphys.2005.05.037

    Article  CAS  Google Scholar 

  211. Ayman HIS, Atta M, Elsayed AM (2008) Uses of electron-beam irradiation to prepare pH- and temperature-sensitive hydrogels from reactive poly(vinyl alcohol) grafts. J Appl Polym Sci 108:1706–1715

    Article  Google Scholar 

  212. Haryanto R, Singh D, Huh PH, Kim SC (2016) Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams. J Biomed Mater Res A 104(1):48–56. https://doi.org/10.1002/jbm.a.35539

    Article  CAS  PubMed  Google Scholar 

  213. Moghaddam RH, Dadfarnia S (2022) Fabrication of two hydrogels composites through the coupling of gelatin with ethyl vanillin/polyvinyl alcohol using electron beam irradiation for ciprofloxacin delivery. Polym Bull. https://doi.org/10.1007/s00289-022-04456-z

    Article  Google Scholar 

  214. Fan J, Chen J, Yang L, Lin H, Cao F (2009) Preparation of dual-sensitive graft copolymer hydrogel based on N-maleoyl-chitosan and poly(N-isopropylacrylamide) by electron beam radiation. Bull Mater Sci 32(5):521–526. https://doi.org/10.1007/s12034-009-0077-x

    Article  CAS  Google Scholar 

  215. Zhang C, Liao L, Gong SS (2007) Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization. Green Chem 9(4):303–331. https://doi.org/10.1039/b608891k

    Article  CAS  Google Scholar 

  216. Erceg T, Cakić S, Cvetinov M, Dapčević-Hadnađev T, Budinski-Simendić J, Ristić I (2020) The properties of conventionally and microwave synthesized poly(acrylamide-co-acrylic acid) hydrogels. Polym Bull 77(4):2089–2110. https://doi.org/10.1007/s00289-019-02840-w

    Article  CAS  Google Scholar 

  217. Wu Y, Brickler C, Li S, Chen G (2021) Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polym Test 93(December 2020):106996. https://doi.org/10.1016/j.polymertesting.2020.106996

    Article  CAS  Google Scholar 

  218. Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28(4):368–386. https://doi.org/10.1002/marc.200600749

    Article  CAS  Google Scholar 

  219. Kempe K, Becer CR, Schubert US (2011) Microwave-assisted polymerizations: recent status and future perspectives. Macromolecules 44(15):5825–5842. https://doi.org/10.1021/ma2004794

    Article  CAS  Google Scholar 

  220. Kaur S, Jindal R, Kaur Bhatia J (2018) Synthesis and RSM-CCD optimization of microwave-induced green interpenetrating network hydrogel adsorbent based on gum copal for selective removal of malachite green from waste water. Polym Eng Sci 58(12):2293–2303. https://doi.org/10.1002/pen.24851

    Article  CAS  Google Scholar 

  221. Chen W et al (2019) Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohydr Polym 219(January):229–239. https://doi.org/10.1016/j.carbpol.2019.05.033

    Article  CAS  PubMed  Google Scholar 

  222. Tanan W, Saengsuwan S (2014) Microwave assisted synthesis of poly (acrylamide-co-2-hydroxyethyl methacrylate)/poly(vinyl alcohol) semi-IPN hydrogel. Energy Procedia 56(3):386–393. https://doi.org/10.1016/j.egypro.2014.07.171

    Article  CAS  Google Scholar 

  223. Beşkardeş TT, GerçekDemirtaş I, Gümüşderelioğlu M (2012) Microwave-assisted fabrication of chitosan—hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med 25:897

    Google Scholar 

  224. Viana MM et al (2020) Microwave-assisted synthesis of polyacrylamide-aminated graphene oxide hybrid hydrogel with improved adsorption properties. J Environ Chem Eng 8(5):1–8. https://doi.org/10.1016/j.jece.2020.104415

    Article  CAS  Google Scholar 

  225. Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33(4):332–336. https://doi.org/10.1002/marc.201100742

    Article  CAS  PubMed  Google Scholar 

  226. Zhao Z, Li Z, Xia Q, Xi H, Lin Y (2008) Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. Eur Polym J 44(4):1217–1224. https://doi.org/10.1016/j.eurpolymj.2008.01.014

    Article  CAS  Google Scholar 

  227. Sacchetti A, Mauri E, Sani M, Masi M, Rossi F (2014) Microwave-assisted synthesis and click chemistry as simple and efficient strategy for RGD functionalized hydrogels. Tetrahedron Lett 55(50):6817–6820. https://doi.org/10.1016/j.tetlet.2014.10.069

    Article  CAS  Google Scholar 

  228. Kowalczuk J, Tritt-Goc J (2011) Effect of microwave irradiation on the hydroxypropyl methylcellulose powder and its hydrogel studied by Magnetic Resonance Imaging. Carbohydr Polym 83(1):166–170. https://doi.org/10.1016/j.carbpol.2010.07.037

    Article  CAS  Google Scholar 

  229. Sun B, Duan L, Peng G, Li X, Xu A (2015) Efficient production of glucose by microwave-assisted acid hydrolysis of cellulose hydrogel. Bioresour Technol 192:253–256. https://doi.org/10.1016/j.biortech.2015.05.045

    Article  CAS  PubMed  Google Scholar 

  230. Gherman T et al (2018) Potential use of galium verum essential oil for antibacterial properties in gelatin based hydrogels prepared by microwave irradiation technique. Rev Chim 69(3):575–580. https://doi.org/10.37358/rc.18.3.6152

    Article  CAS  Google Scholar 

  231. Abdelkader R, Mohammed B (2016) Green synthesis of cationic polyacrylamide composite catalyzed by an ecologically catalyst clay called maghnite-H+ (Algerian MMT) under microwave irradiation. Bull Chem React Eng Catal 11(2):170–175. https://doi.org/10.9767/bcrec.11.2.543.170-175

    Article  CAS  Google Scholar 

  232. Prasad K, Mehta G, Meena R, Siddhanta AK (2006) Hydrogel-forming agar-graft-PVP and κ-carrageenangraft-PVP blends: rapid synthesis and characterization. J Appl Polym Sci 102(4):3654–3663. https://doi.org/10.1002/app.24145

    Article  CAS  Google Scholar 

  233. Shi S, Liu L (2006) Microwave-assisted preparation of temperature sensitive poly(N-isopropylacrylamide) hydrogels in poly(ethylene oxide)-600. J Appl Polym Sci 102(5):4177–4184. https://doi.org/10.1002/app.24519

    Article  CAS  Google Scholar 

  234. Makhado E, Pandey S, Ramontja J (2018) Microwave assisted synthesis of xanthan gum-cl-poly (acrylic acid) based-reduced graphene oxide hydrogel composite for adsorption of methylene blue and methyl violet from aqueous solution. Int J Biol Macromol 119:255–269. https://doi.org/10.1016/j.ijbiomac.2018.07.104

    Article  CAS  PubMed  Google Scholar 

  235. Piątkowski M, Janus A, Radwan-Pragłowska J, Raclavsky K (2017) Microwave-enhanced synthesis of biodegradable multifunctional chitosan hydrogels for wastewater treatment. Express Polym Lett 11(10):809–919. https://doi.org/10.3144/expresspolymlett.2017.77

    Article  CAS  Google Scholar 

  236. Sharma B, Thakur S, Trache D, Nezhad HY, Thakur VK (2020) Microwave-assisted rapid synthesis of reduced graphene oxide-based gum tragacanth hydrogel nanocomposite for heavy metal ions adsorption. Nanomaterials 10(8):1–22. https://doi.org/10.3390/nano10081616

    Article  CAS  Google Scholar 

  237. Meena R, Lehnen R, Saake B (2014) Microwave-assisted synthesis of kC/Xylan/PVP-based blend hydrogel materials: physicochemical and rheological studies. Cellulose 21(1):553–568. https://doi.org/10.1007/s10570-013-0155-5

    Article  CAS  Google Scholar 

  238. Tally M, Atassi Y (2015) Optimized synthesis and swelling properties of a pH-sensitive semi-IPN superabsorbent polymer based on sodium alginate-g-poly(acrylic acid-co-acrylamide) and polyvinylpyrrolidone and obtained via microwave irradiation. J Polym Res. https://doi.org/10.1007/s10965-015-0822-3

    Article  Google Scholar 

  239. Pandey M, Amin MCIM, Mohamad N, Ahmad N, Muda S (2013) Structure and characteristics of bacterial cellulose-based hydrogels prepared by cryotropic gelation and irradiation methods. Polym Plast Technol Eng 52(14):1510–1518. https://doi.org/10.1080/03602559.2013.820755

    Article  CAS  Google Scholar 

  240. Bardajee GR, Azimi S, Sharifi MBAS (2017) Application of central composite design for methyl red dispersive solid phase extraction based on silver nanocomposite hydrogel: microwave assisted synthesis. Microchem J 133:358–369. https://doi.org/10.1016/j.microc.2017.03.037

    Article  CAS  Google Scholar 

  241. Abdullah MF, Azfaralariff A, Lazim AM (2018) Methylene blue removal by using pectin-based hydrogels extracted from dragon fruit peel waste using gamma and microwave radiation polymerization techniques. J Biomater Sci Polym Ed 29(14):1745–1763. https://doi.org/10.1080/09205063.2018.1489023

    Article  CAS  PubMed  Google Scholar 

  242. Zakurdaeva OA, Nesterov SV, Shmakova NA, Semenova GK, Sozontova EO, Feldman VI (2007) Radiation-chemical synthesis of poly(vinyl alcohol) hydrogel containing dicyclohexano-18-crown-6. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 265(1):356–361. https://doi.org/10.1016/j.nimb.2007.09.003

    Article  CAS  Google Scholar 

  243. Ghobashy MM, Mousaa IM, El-Sayyad GS (2021) Radiation synthesis of urea/hydrogel core shells coated with three different natural oils via a layer-by-layer approach: an investigation of their slow release and effects on plant growth-promoting rhizobacteria. Prog Org Coat 151(December 2020):106022. https://doi.org/10.1016/j.porgcoat.2020.106022

    Article  CAS  Google Scholar 

  244. Abou Taleb MF, Abou El Fadl FI, Albalwi H (2021) Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation. Sep Purif Technol 266(January):118551. https://doi.org/10.1016/j.seppur.2021.118551

    Article  CAS  Google Scholar 

  245. Rahaman S, Hasnine SM, Ahmed T, Sultana S, Ullah N (2019) Removal of methylene blue dye by CMC/acrylamide hydrogel prepared by gamma radiation. J Appl Chem Nat Resour 1(2):1–8

    Google Scholar 

  246. Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78(2):278–283. https://doi.org/10.1002/1097-4628(20001010)78:2%3c278::AID-APP60%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  247. Godoy-Alvarez FK et al (2021) Synthesis by gamma irradiation of hyaluronic acid-polyvinyl alcohol hydrogel for biomedical applications. Cell Mol Biol 258:59–63

    Google Scholar 

  248. Hasan Z et al (2022) Adsorption isotherm and kinetics of methylene blue on gamma radiation assisted Starch/Acrylic acid/4-Styrenesulfonic acid sodium salt hydrogel. Polym Technol Mater 61(3):306–324. https://doi.org/10.1080/25740881.2021.1982970

    Article  CAS  Google Scholar 

  249. Saraydın D, Yıldırım EŞ, Karadağ E, Güven O (2018) Radiation-synthesized acrylamide/crotonic acid hydrogels for selective mercury (II) ion adsorption. Adv Polym Technol 37(3):822–829. https://doi.org/10.1002/adv.21725

    Article  CAS  Google Scholar 

  250. Khozemy E, El Nesr E, Mahmoud G (2020) Radiation synthesis of novel hydrogel based on wheat flour for dyes removal. Arab J Nucl Sci Appl 53(2):131–143. https://doi.org/10.21608/ajnsa.2020.18778.1289

    Article  Google Scholar 

  251. Nizam El-Din HMM (2002) Radiation synthesis and application of a hydrogel based on acrylic acid and 2-mercaptobenzimidazole. J Appl Polym Sci 86(7):1607–1614. https://doi.org/10.1002/app.11047

    Article  CAS  Google Scholar 

  252. Shim JW, Nho YC (2003) Preparation of poly(acrylic acid)-chitosan hydrogels by gamma irradiation and in vitro drug release. J Appl Polym Sci 90(13):3660–3667. https://doi.org/10.1002/app.13120

    Article  CAS  Google Scholar 

  253. Abdel-Aal SE (2006) Synthesis of copolymeric hydrogels using gamma radiation and their utilization in the removal of some dyes in wastwater. J Appl Polym Sci 102(4):3720–3731. https://doi.org/10.1002/app.24536

    Article  CAS  Google Scholar 

  254. Nizam El-Din HMM (2011) Characterization and caffeine release properties of N-isopropylacrylamide/hydroxypropyl methacrylate copolymer hydrogel synthesized by gamma radiation. J Appl Polym Sci 119:577–585

    Article  Google Scholar 

  255. Leawhiran N, Pavasant P, Soontornvipart K, Supaphol P (2014) Gamma irradiation synthesis and characterization of AgNP/gelatin/PVA hydrogels for antibacterial wound dressings. J Appl Polym Sci 131(23):1–11. https://doi.org/10.1002/app.41138

    Article  CAS  Google Scholar 

  256. Gad YH, Nasef SM (2021) Radiation synthesis of graphene oxide/composite hydrogels and their ability for potential dye adsorption from wastewater. J Appl Polym Sci 138(41):1–19. https://doi.org/10.1002/app.51220

    Article  CAS  Google Scholar 

  257. Singh B, Sharma V, Kumar S (2011) Synthesis of smart hydrogels by radiation polymerisation for use as slow drug delivery devices. Can J Chem Eng 89(6):1596–1605. https://doi.org/10.1002/cjce.20456

    Article  CAS  Google Scholar 

  258. Mahmoud GA, Abdel-Aal SE, El-kelesh NA, Alshafei EA (2017) Effective removal of hazardous dyes from aqueous solutions using starch based hydrogel and gamma radiation. Environ Ecol Res 5(7):480–488. https://doi.org/10.13189/eer.2017.050703

    Article  CAS  Google Scholar 

  259. Hong TT, Okabe H, Hidaka Y, Hara K (2018) Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environ Pollut 242:1458–1466. https://doi.org/10.1016/j.envpol.2018.07.129

    Article  CAS  PubMed  Google Scholar 

  260. Singh B, Pal L (2011) Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int J Biol Macromol 48(3):501–510. https://doi.org/10.1016/j.ijbiomac.2011.01.013

    Article  CAS  PubMed  Google Scholar 

  261. El-Naggar AWM, Senna MM, Mostafa TA, Helal RH (2017) Radiation synthesis and drug delivery properties of interpenetrating networks (IPNs) based on poly(vinyl alcohol)/methylcellulose blend hydrogels. Int J Biol Macromol 102:1045–1051. https://doi.org/10.1016/j.ijbiomac.2017.04.084

    Article  CAS  PubMed  Google Scholar 

  262. Raafat AI, El-Sawy NM, Badawy NA, Mousa EA, Mohamed AM (2018) Radiation fabrication of Xanthan-based wound dressing hydrogels embedded ZnO nanoparticles: in vitro evaluation. Int J Biol Macromol 118:1892–1902. https://doi.org/10.1016/j.ijbiomac.2018.07.031

    Article  CAS  PubMed  Google Scholar 

  263. El-Sawy NM, Raafat AI, Badawy NA, Mohamed AM (2020) Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug. Int J Biol Macromol 142:254–264. https://doi.org/10.1016/j.ijbiomac.2019.09.097

    Article  CAS  PubMed  Google Scholar 

  264. Swaroop K, Francis S, Somashekarappa HM (2016) Gamma irradiation synthesis of Ag/PVA hydrogels and its antibacterial activity. Mater Today Proc 3(6):1792–1798. https://doi.org/10.1016/j.matpr.2016.04.076

    Article  Google Scholar 

  265. Şahiner N, Malci S, Çelikbiçak Ö, Kantǒlu Ö, Salih B (2005) Radiation synthesis and characterization of new hydrogels based on acrylamide copolymers cross-linked with 1-allyl-2-thiourea. Radiat Phys Chem 74(2):76–85. https://doi.org/10.1016/j.radphyschem.2005.02.002

    Article  CAS  Google Scholar 

  266. Francis S, Varshney L (2005) Studies on radiation synthesis of PVA/EDTA hydrogels. Radiat Phys Chem 74(5):310–316. https://doi.org/10.1016/j.radphyschem.2005.02.003

    Article  CAS  Google Scholar 

  267. Tomić SL, Mićić MM, Filipović JM, Suljovrujić EH (2007) Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat Phys Chem 76(5):801–810. https://doi.org/10.1016/j.radphyschem.2006.05.013

    Article  CAS  Google Scholar 

  268. Tomić SLJ, Mićić MM, Filipović JM, Suljovrujić EH (2007) Swelling and thermodynamic studies of temperature responsive 2-hydroxyethyl methacrylate/itaconic acid copolymeric hydrogels prepared via gamma radiation. Radiat Phys Chem 76(8–9):1390–1394. https://doi.org/10.1016/j.radphyschem.2007.02.038

    Article  CAS  Google Scholar 

  269. Abd El-Mohdy HL, Safrany A (2008) Preparation of fast response superabsorbent hydrogels by radiation polymerization and crosslinking of N-isopropylacrylamide in solution. Radiat Phys Chem 77(3):273–279. https://doi.org/10.1016/j.radphyschem.2007.05.006

    Article  CAS  Google Scholar 

  270. Yang X, Zhu Z, Liu Q, Chen X, Ma M (2008) Effects of PVA, agar contents, and irradiation doses on properties of PVA/ws-chitosan/glycerol hydrogels made by γ-irradiation followed by freeze-thawing. Radiat Phys Chem 77(8):954–960. https://doi.org/10.1016/j.radphyschem.2008.02.011

    Article  CAS  Google Scholar 

  271. Dergunov SA, Mun GA (2009) γ-irradiated chitosan-polyvinyl pyrrolidone hydrogels as pH-sensitive protein delivery system. Radiat Phys Chem 78(1):65–68. https://doi.org/10.1016/j.radphyschem.2008.07.003

    Article  CAS  Google Scholar 

  272. Hiroki A, Tran HT, Nagasawa N, Yagi T, Tamada M (2009) Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by Gamma irradiation. Radiat Phys Chem 78(12):1076–1080. https://doi.org/10.1016/j.radphyschem.2009.05.003

    Article  CAS  Google Scholar 

  273. Lazo LM, Burillo G (2010) Novel comb-type hydrogels of net-[PP-g-AAc]-g-4VP synthesized by gamma radiation, with possible application on Cu2+ immobilization. Radiat Phys Chem 79(1):1–8. https://doi.org/10.1016/j.radphyschem.2009.08.033

    Article  CAS  Google Scholar 

  274. Zhou Y, Zhao Y, Wang L, Xu L, Zhai M, Wei S (2012) Radiation synthesis and characterization of nanosilver/gelatin/carboxymethyl chitosan hydrogel. Radiat Phys Chem 81(5):553–560. https://doi.org/10.1016/j.radphyschem.2012.01.014

    Article  CAS  Google Scholar 

  275. de Oliveira MJA, Parra DF, Amato VS, Lugão AB (2013) Hydrogel membranes of PVAl/clay by gamma radiation. Radiat Phys Chem 84:111–114. https://doi.org/10.1016/j.radphyschem.2012.06.035

    Article  CAS  Google Scholar 

  276. Park JS et al (2013) Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation. Radiat Phys Chem 88:60–64. https://doi.org/10.1016/j.radphyschem.2013.03.018

    Article  CAS  Google Scholar 

  277. Ghobashy MM, Elhady MA (2017) pH-sensitive wax emulsion copolymerization with acrylamide hydrogel using gamma irradiation for dye removal. Radiat Phys Chem 134:47–55. https://doi.org/10.1016/j.radphyschem.2017.01.021

    Article  CAS  Google Scholar 

  278. Yang H, Song W, Zhuang Y, Deng X (2003) Synthesis of strong electrolyte temperature-sensitive hydrogels by radiation polymerization and application in protein separation. Macromol Biosci 3(8):400–403. https://doi.org/10.1002/mabi.200350009

    Article  CAS  Google Scholar 

  279. Ghobashy MM, El-Sattar NEAA (2020) Radiation synthesis of rapidly self-healing hydrogel derived from poly(acrylic acid) with good mechanical strength. Macromol Chem Phys 221(19):1–11. https://doi.org/10.1002/macp.202000218

    Article  CAS  Google Scholar 

  280. Nizam El-Din HM, Khafaga MR, El-Naggar AWM (2015) Physico-chemical and drug release properties of poly(vinyl alcohol)/Gum Arabic/TiO2 nanocomposite hydrogels formed by gamma radiation. J Macromol Sci Part A Pure Appl Chem 52(10):821–829. https://doi.org/10.1080/10601325.2015.1067040

    Article  CAS  Google Scholar 

  281. Ismail SA, Hegazy ESA, Shaker NO, Badr EE, Deghiedy NM (2009) Radiation synthesis of superabsorbent hydrogels based on chitosan and acrylic acid for controlled drug release. J Macromol Sci Part A Pure Appl Chem 46(10):967–974. https://doi.org/10.1080/10601320903158560

    Article  CAS  Google Scholar 

  282. Taleb MFA (2008) Radiation synthesis of polyampholytic and reversible pH-responsive hydrogel and its application as drug delivery system. Polym Bull 61(3):341–351. https://doi.org/10.1007/s00289-008-0952-4

    Article  CAS  Google Scholar 

  283. Abou Taleb MF, Alkahtani A, Mohamed SK (2015) Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 72(4):725–742. https://doi.org/10.1007/s00289-015-1301-z

    Article  CAS  Google Scholar 

  284. Hosny NM, Abbass M, Ismail F, El-Din HMN (2022) Radiation synthesis and anticancer drug delivery of poly(acrylic acid/acrylamide) magnetite hydrogel. Polym Bull. https://doi.org/10.1007/s00289-022-04287-y

    Article  Google Scholar 

  285. Mohamed SF, Mahmoud GA, Taleb MFA (2013) Synthesis and characterization of poly(acrylic acid)-g-sodium alginate hydrogel initiated by gamma irradiation for controlled release of chlortetracycline HCl. Monatshefte fur Chemie 144(2):129–137. https://doi.org/10.1007/s00706-012-0776-7

    Article  CAS  Google Scholar 

  286. Park KR, Nho YC (2003) Synthesis of PVA/PVP hydrogels having two-layer by radiation and their physical properties. Radiat Phys Chem 67(3–4):361–365. https://doi.org/10.1016/S0969-806X(03)00067-7

    Article  CAS  Google Scholar 

  287. Tranquilan-Aranilla C, Yoshii F, Dela Rosa AM, Makuuchi K (1999) Kappa-carrageenan-polyethylene oxide hydrogel blends prepared by gamma irradiation. Radiat Phys Chem 55(2):127–131. https://doi.org/10.1016/S0969-806X(98)00317-X

    Article  CAS  Google Scholar 

  288. Güven O, Şen M, Karadag E, Saraydin D (1999) A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiat Phys Chem 56(4):381–386. https://doi.org/10.1016/S0969-806X(99)00326-6

    Article  Google Scholar 

  289. Xuequan L, Maolin Z, Jiuqiang L, Hongfei H (2000) Radiation preparation and thermo-response swelling of interpenetrating polymer network hydrogel composed of PNIPAAm and PMMA. Radiat Phys Chem 57(3–6):477–480. https://doi.org/10.1016/S0969-806X(99)00475-2

    Article  CAS  Google Scholar 

  290. Sayed A, Mohamed MM, Abdel-raouf MES, Mahmoud GA (2022) Radiation synthesis of green nanoarchitectonics of guar gum-pectin/polyacrylamide/zinc oxide superabsorbent hydrogel for sustainable agriculture. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-022-02465-z

    Article  Google Scholar 

  291. Azady MAR et al (2021) Preparation and characterization of gamma radiation assisted poly-vinyl alcohol/acrylic acid/poly-4-styrene sulphonic acid based hydrogel: application for textile dye removal. J Polym Environ 29(2):520–537. https://doi.org/10.1007/s10924-020-01897-3

    Article  CAS  Google Scholar 

  292. Chanklinhorm P, Rattanawongwiboon T, Ummartyotin S (2022) Development of cellulose from sugarcane bagasse and polyacrylamide-based hydrogel composites by gamma irradiation technique: a study of controlled-release behavior of urea. J Polym Environ 30(6):2631–2641. https://doi.org/10.1007/s10924-021-02362-5

    Article  CAS  Google Scholar 

  293. Mir TA, Ganie SA, Ali A, Mazumdar N, Li Q (2022) Radiation synthesis of functionalized gum arabic and hydroxyethyl methacrylate hydrogels for the controlled release of niacin (vitamin B3). J Polym Environ 30(8):3250–3269. https://doi.org/10.1007/s10924-022-02432-2

    Article  CAS  Google Scholar 

  294. AbdEl-Mohdy HL, Ghanem S (2009) Biodegradability, antimicrobial activity and properties of PVA/PVP hydrogels prepared by γ-irradiation. J Polym Res 16(1):1–10. https://doi.org/10.1007/s10965-008-9196-0

    Article  CAS  Google Scholar 

  295. Abd El-Mohdy HL (2013) Radiation synthesis of nanosilver/poly vinyl alcohol/cellulose acetate/gelatin hydrogels for wound dressing. J Polym Res. https://doi.org/10.1007/s10965-013-0177-6

    Article  Google Scholar 

  296. Hossain M, Afroz S, Islam MU, Alam AKMM, Khan RA, Alam A (2021) Synthesis and characterization of polyvinyl alcohol/water-hyacinth (Eichhornia crassipes) based hydrogel by applying gamma radiation. J Polym Res 28(5):1–12. https://doi.org/10.1007/s10965-021-02527-9

    Article  CAS  Google Scholar 

  297. Burillo JC, Castro-Larragoitia J, Burillo G, Ortega A, Medellin-Castillo N (2017) Removal of arsenic and iron from mine-tailing leachate using chitosan hydrogels synthesized by gamma radiation. Environ Earth Sci 76(13):1–11. https://doi.org/10.1007/s12665-017-6780-9

    Article  CAS  Google Scholar 

  298. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11(1):1–10. https://doi.org/10.1186/s13065-017-0273-5

    Article  CAS  Google Scholar 

  299. Tran Vo TM, Piroonpan T, Preuksarattanawut C, Kobayashi T, Potiyaraj P (2022) Characterization of pH-responsive high molecular-weight chitosan/poly (vinyl alcohol) hydrogel prepared by gamma irradiation for localizing drug release. Bioresour Bioprocess 9:1. https://doi.org/10.1186/s40643-022-00576-6

    Article  Google Scholar 

  300. Zhu CH, Bin Hai Z, Cui CH, Li HH, Chen JF, Yu SH (2012) In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small. https://doi.org/10.1002/smll.201102060

    Article  PubMed  PubMed Central  Google Scholar 

  301. El-HagAli A, AbdEl-Rehim HA, Kamal H, Hegazy DESA (2008) Synthesis of carboxymethyl cellulose based drug carrier hydrogel using ionizing radiation for possible use as site specific delivery system. J Macromol Sci A Pure Appl Chem 45(8):628–634. https://doi.org/10.1080/10601320802168751

    Article  CAS  Google Scholar 

  302. Döker S, Çelikbiçak Ö, Doǧan M, Salih B (2006) Recovery and pre-concentration of gold onto poly((N-(Hydroxymethyl)methacrylamide)-1-allyl-2-thiourea) hydrogels synthesized by gamma radiation. Microchem J 84(1–2):80–87. https://doi.org/10.1016/j.microc.2006.04.020

    Article  CAS  Google Scholar 

  303. González-Torres M et al (2018) Biological activity of radiation-induced collagen-polyvinylpyrrolidone-PEG hydrogels. Mater Lett 214:224–227. https://doi.org/10.1016/j.matlet.2017.12.006

    Article  CAS  Google Scholar 

  304. Bhuyan MM, Jophous M, Jeong JH (2023) Preparation of pectin-acrylamide-(vinyl phosphonic acid) hydrogel and its selective adsorption of metal ions. Polym Bull 80(4):4625–4641. https://doi.org/10.1007/s00289-022-04649-6

    Article  CAS  Google Scholar 

  305. Ahmed NA, Elshahawy MF, Mohammed RD, Mahmoud GA (2023) Removal of astrazon red dye from wastewater using eggshell/graphene oxide embed in (Gum Acacia/Acrylamide) hydrogel nanocomposites synthesized by gamma irradiation. J Inorg Organomet Polym Mater 25:89. https://doi.org/10.1007/s10904-023-02775-w

    Article  CAS  Google Scholar 

  306. Chen J, Rong L, Lin H, Xiao R, Wu H (2009) Radiation synthesis of pH-sensitive hydrogels from β-cyclodextrin-grafted PEG and acrylic acid for drug delivery. Mater Chem Phys 116(1):148–152. https://doi.org/10.1016/j.matchemphys.2009.03.005

    Article  CAS  Google Scholar 

  307. Hafezi Moghaddam R, Haji Shabani AM, Dadfarnia S (2019) Synthesis of new hydrogels based on pectin by electron beam irradiation with and without surface modification for methylene blue removal. J Environ Chem Eng 7(1):102919. https://doi.org/10.1016/j.jece.2019.102919

    Article  CAS  Google Scholar 

  308. Liu G et al (2020) Thermally driven characteristic and highly photocatalytic activity based on N-isopropyl acrylamide/high-substituted hydroxypropyl cellulose/g-C3N4 hydrogel by electron beam pre-radiation method. J Thermoplast Compos Mater. https://doi.org/10.1177/0892705720944214

    Article  Google Scholar 

  309. Sayeda AHZ, Ibrahim M, ElSalmawi KM (2007) Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation. J Appl Polym Sci 104:2003–2008

    Article  Google Scholar 

  310. Pushpamalar V, Langford SJ, Ahmad M, Hashim K, Lim YY (2013) Preparation of carboxymethyl sago pulp hydrogel from sago waste by electron beam irradiation and swelling behavior in water and various pH media. J Appl Polym Sci 128(1):451–459. https://doi.org/10.1002/app.38192

    Article  CAS  Google Scholar 

  311. Song XF et al (2020) Efficient construction and enriched selective adsorption-photocatalytic activity of PVA/PANI/TiO2 recyclable hydrogel by electron beam radiation. J Appl Polym Sci 137(13):1–16. https://doi.org/10.1002/app.48516

    Article  CAS  Google Scholar 

  312. Ion I, Stancu E, Mitu CM, Marinescu V, Lungulescu EM, Nicula NO (2022) Synthesis of silver nanoparticles embedded in micro-hydrogel particles by electron beam irradiation. Chem Proc 2:2. https://doi.org/10.3390/chemproc2022007022

    Article  Google Scholar 

  313. Liu Z, Ma R, Du W, Yang G, Chen T (2021) Radiation-initiated high strength chitosan/lithium sulfonate double network hydrogel/aerogel with porosity and stability for efficient CO2 capture. RSC Adv 11(33):20486–20497. https://doi.org/10.1039/d1ra03041h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Ajji Z, Mirjalili G, Alkhatab A, Dada H (2008) Use of electron beam for the production of hydrogel dressings. Radiat Phys Chem 77(2):200–202. https://doi.org/10.1016/j.radphyschem.2007.05.016

    Article  CAS  Google Scholar 

  315. Mozalewska W, Czechowska-Biskup R, Olejnik AK, Wach RA, Ulański P, Rosiak JM (2017) Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiat Phys Chem 134:1–7. https://doi.org/10.1016/j.radphyschem.2017.01.003

    Article  CAS  Google Scholar 

  316. Szafulera K, Wach RA, Olejnik AK, Rosiak JM, Ulański P (2018) Radiation synthesis of biocompatible hydrogels of dextran methacrylate. Radiat Phys Chem 142(October 2016):115–120. https://doi.org/10.1016/j.radphyschem.2017.01.004

    Article  CAS  Google Scholar 

  317. Yoshii F, Zhanshan Y, Isobe K, Shinozaki K, Makuuchi K (1999) Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat Phys Chem 55(2):133–138. https://doi.org/10.1016/S0969-806X(98)00318-1

    Article  CAS  Google Scholar 

  318. Mohanan A, Vishalakshi B, Ganesh S (2011) Swelling and metal ion adsorption characteristics of radiation synthesized stimuli responsive PAAm-KC semi—IPN hydrogels. Sep Sci Technol 46(13):2041–2048. https://doi.org/10.1080/01496395.2011.586397

    Article  CAS  Google Scholar 

  319. Chan EWC et al (2020) Swelling behaviour and methylene blue absorption of carboxymethyl cellulose hydrogels prepared from malaysian agricultural wastes by electron beam irradiation. Cell Chem Technol 54(5–6):421–428. https://doi.org/10.35812/CelluloseChemTechnol.2020.54.43

    Article  CAS  Google Scholar 

  320. Czechowska-Biskup R, Wach RA, Stojek P, Kamińska M, Rosiak JM, Ulański P (2016) Synthesis of chitosan and carboxymethyl chitosan hydrogels by electron beam irradiation. Prog Chem Appl Chitin Deriv 21(October):27–45. https://doi.org/10.15259/PCACD.21.03

    Article  CAS  Google Scholar 

  321. Jamingan Z, Ahmad MB, Hashim K, Zainuddin N (2015) Sago starch based hydrogel prepared using electron beam irradiation technique for controlled release application. Malays J Anal Sci 19(3):503–512

    Google Scholar 

  322. Pal P, Singh SK, Mishra S, Pandey JP, Sen G (2019) Gum ghatti based hydrogel: microwave synthesis, characterization, 5-fluorouracil encapsulation and ‘in vitro’ drug release evaluation. Carbohydr Polym 222(6):114979. https://doi.org/10.1016/j.carbpol.2019.114979

    Article  CAS  PubMed  Google Scholar 

  323. Sethi S, Kaith BS, Saruchi A, Kumar V (2019) Fabrication and characterization of microwave assisted carboxymethyl cellulose-gelatin silver nanoparticles imbibed hydrogel: Its evaluation as dye degradation. React Funct Polym 142(June):134–146. https://doi.org/10.1016/j.reactfunctpolym.2019.06.014

    Article  CAS  Google Scholar 

  324. Zhao ZX, Li Z, Xia QB, Bajalis E, Xi HX, Lin YS (2008) Swelling/deswelling kinetics of PNIPAAm hydrogels synthesized by microwave irradiation. Chem Eng J 142(3):263–270. https://doi.org/10.1016/j.cej.2007.12.009

    Article  CAS  Google Scholar 

  325. Oladipo AA, Gazi M (2015) Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper(II) ions and direct red 80 dye: a multi-component adsorption system. J Taiwan Inst Chem Eng 47:125–136. https://doi.org/10.1016/j.jtice.2014.09.027

    Article  CAS  Google Scholar 

  326. Zhang L, Zheng GJ, Guo YT, Zhou L, Du J, He H (2014) Preparation of novel biodegradable pHEMA hydrogel for a tissue engineering scaffold by microwave-assisted polymerization. Asian Pac J Trop Med 7(2):136–140. https://doi.org/10.1016/S1995-7645(14)60009-2

    Article  CAS  PubMed  Google Scholar 

  327. Pandey M, Amin MCIM (2013) Accelerated preparation of novel bacterial cellulose/acrylamide-based hydrogel by microwave irradiation. Int J Polym Mater Polym Biomater 62(7):402–405. https://doi.org/10.1080/00914037.2012.719136

    Article  CAS  Google Scholar 

  328. Baiya C, Nannuan L, Tassanapukdee Y, Chailapakul O, Songsrirote K (2019) The synthesis of carboxymethyl cellulose-based hydrogel from sugarcane bagasse using microwave-assisted irradiation for selective adsorption of copper(II) ions. Environ Prog Sustain Energy 38(s1):S157–S165. https://doi.org/10.1002/ep.12950

    Article  CAS  Google Scholar 

  329. Tally M, Atassi Y (2016) Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly(acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym Bull 73(11):3183–3208. https://doi.org/10.1007/s00289-016-1649-8

    Article  CAS  Google Scholar 

  330. Mohammad N, Atassi Y, Tally M (2017) Synthesis and swelling behavior of metal-chelating superabsorbent hydrogels based on sodium alginate-g-poly(AMPS-co-AA-co-AM) obtained under microwave irradiation. Polym Bull 74(11):4453–4481. https://doi.org/10.1007/s00289-017-1967-5

    Article  CAS  Google Scholar 

  331. Iqbal FM, Iqbal S, Nasir B, Hassan W, Ahmed H, Iftikhar SY (2022) Formulation of captopril-loaded hydrogel by microwave-assisted free radical polymerization and its evaluation. Polym Bull 79(9):7613–7633. https://doi.org/10.1007/s00289-021-03867-8

    Article  CAS  Google Scholar 

  332. Khodaverdi E et al (2014) Injectable supramolecular hydrogel from insulin-loaded triblock PCL-PEG-PCL copolymer and γ-cyclodextrin with sustained-release property. AAPS PharmSciTech 16(1):140–149. https://doi.org/10.1208/s12249-014-0198-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti P. More.

Ethics declarations

Conflict of interest

There is no conflict of interest by any of the author to this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

More, A.P., Chapekar, S. Irradiation assisted synthesis of hydrogel: A Review. Polym. Bull. 81, 5839–5908 (2024). https://doi.org/10.1007/s00289-023-05020-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-023-05020-z

Keywords

Navigation