Skip to main content
Log in

Radiation synthesis of porous calcium silicate aerogel derived from polyacrylamide hydrogel as thermal insulator

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this article, the first aerogels synthesis through cross-linked polyacrylamide (PAAm) hydrogel was reported through the use of gamma irradiation technique. Hydrogel obtained from gamma irradiation of acrylamide monomer dissolved in a solution of sodium silicate as a silicon precursor. Various irradiation doses (10 up to 60 kGy) and various acrylamide (AAm) contents (6.25, 9.37, 12.5, and 30%) were utilized in the polymerization process. The polyacrylamide (PAAm) hydrogel loaded with sodium silicate inside is soaked in a solution of CaCl2 and then heated at a temperature of 250 °C for 2 h to provide Ca-silicate aerogels with density around 0.16–0.095 gm/cm3 and porosity of 84–94.8%. Almost all samples of the obtained (Ca-Si) aerogels have porosity >80% and low thermal conductivity (thermal conductivity value around 0.114 and 0.096 W/m.K) at ambient condition. This work discusses the effects of preparation conditions like the gamma-irradiation doses and the total solids content (wt%) of PAAm on the formation of Ca-silicate aerogels. It was found that PAAm plays a crucial role in the thermal conductivity and porosity (%) of the obtained Ca-Si aerogel samples. The increasing of PAAm content (wt%) from 6.25 to 30% increased the pores (v%) from 84 to 90.5% and reduced the thermal conductivity from 0.114 to 0.096 W/(m.K). This is because the presence of PAAm at higher concentrations increases the free volume and reduces interfacial interactions to give a high-porous structure of the Ca-Si aerogel.

Preparation procedure of the calcium silicate aerogels using gamma irradiation technique. In particular, the cross-linked polyacrylamide has higher modulus as reinforced silica aerogels of low density. The reinforced Ca-silicate aerogels can be an outstanding thermal insulating material used for different industrial and space exploration, with their very porous texture.

Highlights

  • Performed the radiation synthesis of macro porous calcium silicate aerogels based different ratio of polyacrylamide hydrogel.

  • Investigated the effects of preparation conditions on the properties of Ca-silicate aerogels.

  • All obtained (Ca-Si) aerogels samples have porosity greater than 80%.

  • All obtained (Ca-Si) aerogels samples have thermal conductivity around 0.114 and 0.096 W/m.K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carraher CE (2005) General topics: silica aerogels—properties and uses. Polym N 30:386–388

    Article  CAS  Google Scholar 

  2. Schultz JM, Jensen KI, Kristiansen FH (2005) Super insulating aerogel glazing. Sol Energy Mater Sol cells 89(2–3):275–285

    Article  CAS  Google Scholar 

  3. Wittwer V (1992) Development of aerogel windows. J Non Cryst Solids 145:233–236

    Article  Google Scholar 

  4. da Cunha JP, Neves F, Lopes MI (2000) On the reconstruction of Cherenkov rings from aerogel radiators. Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 452(no. 3):401–421

    Article  Google Scholar 

  5. Hung W-C, Horng RS, Shia R-E (2021) Investigation of thermal insulation performance of glass/carbon fiber-reinforced silica aerogel composites. J Sol-Gel Sci Technol 97(no. 2):414–421

    Article  CAS  Google Scholar 

  6. Aegerter MA, Leventis N, Koebel MM, Advances in sol-gel derived materials and technologies. In: Aerogels Handbook; Springer New York, NY, USA, 2011.

  7. Dunn BC et al. (2005) Silica aerogel supported catalysts for Fischer–Tropsch synthesis. Appl Catal A Gen 278(2):233–238

    Article  CAS  Google Scholar 

  8. Karami S, Motahari S, Pishvaei M, Eskandari N (2018) Improvement of thermal properties of pigmented acrylic resin using silica aerogel. J Appl Polym Sci 135(1):45640

    Article  Google Scholar 

  9. Andjelkovic I, Tran DNH, Kabiri S, Azari S, Markovic M, Losic D (2015) Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl Mater Interfaces 7(18):9758–9766

    Article  CAS  Google Scholar 

  10. Scott PM, Van Walbeek W, Kennedy B, Anyeti D (1972) Mycotoxins (ochhratoxin A, citrinin, and sterigmatocystin) and toxigenic fungi in grains and other agricultural products. J Agric Food Chem 20(6):1103–1109

    Article  CAS  Google Scholar 

  11. Arfaoui J, Ghorbel A, Petitto C, Delahay G (2021) New Mn-TiO 2 aerogel catalysts for the low-temperature selective catalytic reduction of NOx. J Sol-Gel Sci Technol 97(2):302–310

    Article  CAS  Google Scholar 

  12. Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173

    Article  CAS  Google Scholar 

  13. Giray S, Bal T, Kartal AM, Kızılel S, Erkey C (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res Part A 100(5):1307–1315

    Article  Google Scholar 

  14. Ni M, Xu Q-Q, Yin J-Z (2012) Preparation of controlled release nanodrug ibuprofen supported on mesoporous silica using supercritical carbon dioxide. J Mater Res 27(22):2902–2910

    Article  CAS  Google Scholar 

  15. Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Pat Eng 2(3):195–200

    Article  CAS  Google Scholar 

  16. Orçaire O, Buisson P, Pierre AC (2006) Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B Enzym 42(3–4):106–113

    Article  Google Scholar 

  17. Sani S, Muhid MNM, Hamdan H (2011) Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution. J sol-gel Sci Technol 59(1):7–18

    Article  CAS  Google Scholar 

  18. Gibiat V, Lefeuvre O, Woignier T, Pelous J, Phalippou J (1995) Acoustic properties and potential applications of silica aerogels. J Non Cryst Solids 186:244–255

    Article  CAS  Google Scholar 

  19. Long JW, Swider‐Lyons KE, Stroud RM, Rolison DR (2000) Design of pore and matter architectures in manganese oxide charge‐storage materials. Electrochem Solid-State Lett 3(10):453–456

    Article  CAS  Google Scholar 

  20. Ward DA, Ko EI (1995) Preparing catalytic materials by the sol-gel method. Ind Eng Chem Res 34(2):421–433

    Article  CAS  Google Scholar 

  21. Wang C-T, Wu C-L, Chen I-C, Huang Y-H (2005) Humidity sensors based on silica nanoparticle aerogel thin films. Sens Actuators B Chem 107(no. 1):402–410

    Article  CAS  Google Scholar 

  22. Perdigoto MLN et al. (2012) Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J Colloid Interface Sci 380(1):134–140

    Article  CAS  Google Scholar 

  23. Jones SM (2006) Aerogel: space exploration applications. J Sol-gel Sci Technol 40(2–3):351–357

    Article  CAS  Google Scholar 

  24. Limero T, Cheng P, Reese E, Trowbridge J, Results of the air quality monitor’s experiment to measure volatile organic compounds aboard the international space station. In: 40th International Conference on Environmental Systems, AIAA Aerospace Research Central 2010, p. 6278.

  25. Carpenter PW, Berkouk K, Lucey AD (2003) Pressure wave propagation in fluid-filled co-axial elastic tubes part 2: mechanisms for the pathogenesis of syringomyelia. J Biomech Eng 125(6):857–863

    Article  CAS  Google Scholar 

  26. Lichodziejewski D, et al., Development and testing of the orion CEV parachute assembly system (CPAS), In 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Aerospace Research Central, p. 2938.

  27. Hrubesh LW (1998) Aerogel applications. J Non Cryst Solids 225:335–342

    Article  CAS  Google Scholar 

  28. Guise MT, Hosticka B, Earp BC, Norris PM (2001) An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres. J Non Cryst Solids 285(1–3):317–322

    Article  CAS  Google Scholar 

  29. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non Cryst Solids 225:364–368

    Article  CAS  Google Scholar 

  30. Ganbavle VV, Kalekar AS, Harale NS, Patil SS, Dhere SL (2021) Rapid synthesis of ambient pressure dried tetraethoxysilane based silica aerogels. J Sol-Gel Sci Technol 97(1):5–10

    Article  CAS  Google Scholar 

  31. Xu Y, Huang G, He Y (2005) Sol–gel preparation of Ba6− 3xSm8+ 2xTi18O54 microwave dielectric ceramics. Ceram Int 31(1):21–25

    Article  Google Scholar 

  32. Jorge PAS, Caldas P, Rosa CC, Oliva AG, Santos JL (2004) Optical fiber probes for fluorescence based oxygen sensing. Sens Actuators B Chem 103(no. 1–2):290–299

    Article  CAS  Google Scholar 

  33. Matsuda H, Kobayashi N, Kobayashi T, Miyazawa K, Kuwabara M (2000) Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol–gel method. J Non Cryst Solids 271(1–2):162–166

    Article  CAS  Google Scholar 

  34. Schüth F, Sing KSW, Weitkamp J, Handbook of porous solids. Wiley-Vch, 2002.

  35. Sakka S, Almeida RM, Handbook of sol-gel science and technology. In: Characterization and properties of sol-gel materials and products, vol. 2. Springer Science & Business Media, 2005.

  36. Dos Santos DI, Aegerter MA, Craievich AF, Lours T, Zarzycki J (1987) Structural studies of fractal silica aerogels. J Non Cryst Solids 95:1143–1150

    Article  Google Scholar 

  37. Rewatkar PM et al. (2018) Sturdy, monolithic SiC and Si3N4 aerogels from compressed polymer-cross-linked silica xerogel powders. Chem Mater 30(no. 5):1635–1647

    Article  CAS  Google Scholar 

  38. Rewatkar PM, Soni RU, Sotiriou-Leventis C, Leventis N (2019) A cobalt sunrise: thermites based on LiClO4-Filled Co (0) aerogels prepared from polymer-cross-linked cobaltia xerogel powders. ACS Appl Mater Interfaces 11(no. 25):22668–22676

    Article  CAS  Google Scholar 

  39. Mandal C, Donthula S, Rewatkar PM, Sotiriou-Leventis C, Leventis N (2019) Experimental deconvolution of depressurization from capillary shrinkage during drying of silica wet-gels with SCF CO 2 why aerogels shrink?. J Sol-Gel Sci Technol 92(3):662–680

    Article  CAS  Google Scholar 

  40. Rewatkar PM, Saeed AM, Majedi Far H, Donthula S, Sotiriou-Leventis C, Leventis N (2019) Polyurethane aerogels based on cyclodextrins: high-capacity desiccants regenerated at room temperature by reducing the relative humidity of the environment. ACS Appl Mater Interfaces 11(37):34292–34304

    Article  CAS  Google Scholar 

  41. Gill I (2001) Bio-doped nanocomposite polymers: Sol− gel bioencapsulates. Chem Mater 13(10):3404–3421

    Article  CAS  Google Scholar 

  42. Tabernero A, Baldino L, Misol A, Cardea S, del Valle EMM (2020) Role of rheological properties on physical chitosan aerogels obtained by supercritical drying. Carbohydr Polym 233:115850

    Article  CAS  Google Scholar 

  43. Ghobashy MM, El-Sawy NM, Kodous AS (2021) Nanocomposite of cosubstituted carbonated hydroxyapatite fabricated inside poly (sodium hyaluronate-acrylamide) hydrogel template prepared by gamma radiation for osteoblast cell regeneration Radiat Phys Chem 183:109408

    Article  CAS  Google Scholar 

  44. Ghobashy MM et al. (2021) Controlling radiation degradation of a CMC solution to optimize the swelling of acrylic acid hydrogel as water and fertilizer carriers. Polym Adv Technol 32(2):514–524

    Article  CAS  Google Scholar 

  45. Ghobashy MM, El‐Sattar NEAA (2020) Radiation synthesis of rapidly self-healing hydrogel derived from poly (acrylic acid) with good mechanical strength. Macromol Chem Phys 221(19):2000218

    Article  CAS  Google Scholar 

  46. Ghobashy MM et al. (2020) Characterization of Starch-based three components of gamma-ray cross-linked hydrogels to be used as a soil conditioner. Mater Sci Eng B 260:114645

    Article  CAS  Google Scholar 

  47. Younis SA, Ghobashy MM, Bassioni G, Gupta AK (2020) Tailored functionalized polymer nanoparticles using gamma radiation for selected adsorption of barium and strontium in oilfield wastewater. Arab J Chem 13(2):3762–3774

    Article  CAS  Google Scholar 

  48. Ghobashy MM, Alshangiti DM, Alkhursani SA, Al-Gahtany SA, Shokr FS, Madani M (2020) Improvement of in vitro dissolution of the poor water-soluble amlodipine drug by solid dispersion with irradiated polyvinylpyrrolidone. ACS Omega 5(34):21476–21487

    Article  CAS  Google Scholar 

  49. Lee I, Kang S-M, Jang S-C, Lee G-W, Shim HE, Rethinasabapathy M, Roh C, Huh YS (2019) One-pot gamma ray-induced green synthesis of a Prussian blue-laden polyvinylpyrrolidone/reduced graphene oxide aerogel for the removal of hazardous pollutants. Journal of Materials Chemistry A 7(4):1737–1748

    Article  CAS  Google Scholar 

  50. Bandi S, Schiraldi DA (2006) Glass transition behavior of clay aerogel/poly (vinyl alcohol) composites. Macromolecules 39(19):6537–6545

    Article  CAS  Google Scholar 

  51. Chen H-B, Schiraldi DA (2019) Flammability of polymer/clay aerogel composites: an overview. Polym Rev 59(1):1–24

    Article  CAS  Google Scholar 

  52. Bandi S, Bell M, Schiraldi DA (2005) Temperature-responsive clay aerogel− polymer composites. Macromolecules 38(22):9216–9220

    Article  CAS  Google Scholar 

  53. Hostler SR, Abramson AR, Gawryla MD, Bandi SA, Schiraldi DA (2009) Thermal conductivity of a clay-based aerogel. Int J Heat Mass Transf 52(no. 3–4):665–669

    Article  CAS  Google Scholar 

  54. Maddalena R, Li K, Chater PA, Michalik S, Hamilton A (2019) Direct synthesis of a solid calcium-silicate-hydrate (CSH). Constr Build Mater 223:554–565

    Article  CAS  Google Scholar 

  55. Lowell S, Shields JE, Thomas MA, Thommes M (2012) Characterization of porous solids and powders: surface area, pore size and density, vol. 16. Springer Science & Business Media

  56. Taylor HFW (1986) Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc 69(6):464–467

    Article  CAS  Google Scholar 

  57. Liu G et al. (2012) Influence of thermal process on microstructural and physical properties of ambient pressure dried hydrophobic silica aerogel monoliths. J Sol-Gel Sci Technol 62(2):126–133

    Article  CAS  Google Scholar 

  58. Luo F, Shao Z, Zhang Y, Cheng X (2013) Synthesis of paramagnetic iron incorporated silica aerogels by ambient pressure drying. Mater Chem Phys 142(1):113–118

    Article  CAS  Google Scholar 

  59. Yu Y, Guo D, Fang J (2015) Synthesis of silica aerogel microspheres by a two-step acid–base sol–gel reaction with emulsification technique. J Porous Mater 22(3):621–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done and carried out by the National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mohamady Ghobashy.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, A.M., Ghobashy, M.M. & Abd El‐Sattar, N.E.A. Radiation synthesis of porous calcium silicate aerogel derived from polyacrylamide hydrogel as thermal insulator. J Sol-Gel Sci Technol 98, 593–604 (2021). https://doi.org/10.1007/s10971-021-05534-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05534-w

Keywords

Navigation