Skip to main content
Log in

Removal of arsenic and iron from mine-tailing leachate using chitosan hydrogels synthesized by gamma radiation

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mine residue and leachate were sampled from an acid mine drainage site near Arroyo San Pedro, which is one of the oldest abandoned mine districts in San Luis Potosi, Mexico, and characterized by X-ray diffraction and inductively coupled plasma-optical emission spectroscopy, confirming the presence of Fe, As, and SO4 2−. To address this problem, chitosan network (net-CS) and chitosan network-N-vinylcaprolactam/N–N-dimethylacrylamide (net-CS)-g-NVCL/DMAAm hydrogels were synthesized and used as adsorbents of the different ions present in the aforementioned leachate by batch equilibrium procedure. Kinetics, isotherms, and ions dissolved in leachate were evaluated. The gels showed the highest adsorption capacity for As and Fe ions. The adsorption capacity of the net-CS hydrogels for As (V) and Fe(III) was 0.786 and 76.85 mg/g, respectively, attained after 50 h. The surface of the hydrogels was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy, before and after the adsorption process, where the presence of a bond between the hydrogels and heavy metals ions, which is commonly observed in organic groups, was observed. In addition, Freundlich and Langmuir adsorption isotherms constants were determined for the As and Fe ions, and it was found that the Freundlich isotherm, with a first-order pseudo model, better fitted the adsorption process, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The results from the Geochemist´s Workbench (GWB) software program revealed that arsenates, such as H3AsO4, H2AsO4 , as well as Fe++, FeSO4(aq) and FeOH+ were the common aqueous species found in the leachate at pH = 2.9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barakat MA, Sahiner N (2008) Cationic hydrogels for toxic arsenate removal from aqueous environment. J Environ Manag 88:955–961

    Article  Google Scholar 

  • Barrera-Díaz C, Ramirez E, Burillo G, Roa G, Bilyeu B (2011) Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution. J Hazard Mater 192:432–439

    Article  Google Scholar 

  • Bethke CM (2008) Geochemical and biogeochemical reaction modeling. Cambridge University Press, Cambridge

    Google Scholar 

  • Burillo G, González-Gómez R, Ortega A, Lazo LM (2014) Retention of heavy metal ions on comb-type hydrogels based on acrylic acid and 4-vinylpyridine, synthesized by gamma radiation. Radiat Phys Chem 102:117–123

    Article  Google Scholar 

  • Corrales-Pérez D, Romero FM (2013) Evaluación de la peligrosidad de jales de zonas mineras de Nicaragua y México y alternativas de solución. Bol Soc Geol Mex 65(3):427–446

    Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157(2–3):220–229

    Article  Google Scholar 

  • Essington ME (2005) Soil and water chemistry an integrative approach. CRC Press, Florida

    Google Scholar 

  • Giménez J, Martínez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite and goethite. J Hazard Mater 141:575–580

    Article  Google Scholar 

  • Hering J, Wilkie J (2003) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A 107:97–110

    Google Scholar 

  • Lee MK, Saunders JA, Harrington J, Lutes C, Wilkin R (2004) Strategy for in situ bioremediation of arsenic in groundwater: field and modeling studies. In Gavaskar AR and Chen ASC (eds.), Battelle Press, Monterey CA, 4C-06

  • Martínez OA (2015) Movilidad de metales y metaloides en sitios mineros: Predicción e impacto en recursos hídricos. Dissertation. Universidad Autónoma de San Luis Potosi

  • Masindi V, Gitari MW, Tutu H, DeBeer M (2015) Synthesis of cryptocrystalline magnesite-bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage. J Water Process Eng 11(007):2214–7144

    Google Scholar 

  • Medellín-Castillo NA, Leyva-Ramos R, Ocampo-Pérez R, García de la Cruz A, Aragón-Pin A, Martinez-Rosales JM, Guerrero-Coronado RM, Fuentes-Rubio L (2007) Adsorption of fluoride from water solution on bone bar. Ind Eng Chem Res 46:9205–9212

    Article  Google Scholar 

  • Mende M, Schwarz D, Steinbach C, Boldt R, Schwarz S (2016) Simultaneous adsorption of heavy metal ions and anions from aqueous solutions on chitosan − Investigated by spectrophotometry and SEM-EDX analysis. Colloids Surf A. doi:10.1016/j.colsurfa.2016.08.033

    Google Scholar 

  • Montes JA, Ortega A, Burillo G (2015) Dual-stimuli responsive copolymers based on N-vinylcaprolactam/chitosan. J Radioanal Nucl Chem 303:2143–2150

    Google Scholar 

  • Nordstrom DK (2011) Hydrogeochemical process governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to Surface waters. Appl Geochem 26:1777–1791

    Article  Google Scholar 

  • Orozco-Guareño E, Hernández SL, Gómez-Salazar S, Mendizábal E, Katime I (2011) Estudio del hinchamiento de hidrogeles acrílicos terpoliméricos en agua y en soluciones acuosas de ion plumboso. Rev Mex Ing Quim 10(3):465–470

    Google Scholar 

  • Otero-Fariña A, Gago R, Antelo J, Fiol S, Arce F (2015) Surface complexation modelling of arsenic and copper immobilization by iron oxide precipitates derived from acid mine drainage. Bol Soc Geol Mex 67(3):493–508

    Google Scholar 

  • Pandey ND, Singh A, Narvi SS, Dutta PK (2006) External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull Mater Sci 29:233–238

    Article  Google Scholar 

  • Pérez-Calixto MP, Ortega A, García-Uriostegui L, Burillo G (2016) Synthesis and characterization of N-vinylcaprolactam/N, N-dimethylacrylamide grafted onto chitosan networks by gamma radiation. Radiat Phys Chem 119:228–235

    Article  Google Scholar 

  • Rojas B, Ramírez M, Prin JL, Torres C, Bejarano L, Villaroel H, Rojas L, Murillo M, Katime I (2010) Hidrogeles de acrilamida: estudio de su capacidad de remoción de efluentes industriales. Rev Latin Am Metal Mater 30(1):28–39

    Google Scholar 

  • Saunders JA, Lee MK, Shamsudduha M, Dhakal P, Uddin A, Chowdury MT, Ahmed KM (2008) Geochemistry and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl Geochem 23:3205–3214

    Article  Google Scholar 

  • Serrano-Gómez J, Burillo G, Bonifacio-Martinez J (2013) Adsorption of Chromium (VI) on Radiation Grafted N, N-dimethylaminoethylmethacrylate onto Polypropylene, from Aqueous Solutions. J Mex Chem Soc 57(2):80–84

    Google Scholar 

  • Sherman D, Randall S, Ragnarsdottir K (2001) Sorption of As(V) on green rust and lepidocrocite: surface complexes from EXAFS spectroscopy. Geochim Cosmochim Acta 65(7):1015–1023

    Article  Google Scholar 

  • Strasdeit H, Becker T, Schlaak M (2000) Adsorption of nickel (II), zinc (II), and cadmium (II) by new chitosan derivates. React Funct Polym 44:289–298

    Article  Google Scholar 

  • Tonkin JW, Balistrieri LS, Murray JW (2002) Modeling metal removal onto natural particles formed during mixing of acid rock drainage with ambient surface water. Environ Sci Technol 36:484–492

    Article  Google Scholar 

  • Varma AJ, Deshpande SV, Kennedy JF (2003) Metal complexation by chitosan and its derivates: a review. Carbohydr Polym 55:77–93

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to the Consejo Nacional de Ciencia y Tecnología-Fondo Institucional de Fomento Regional para el desarrollo científico, tecnológico y de innovación. (CONACYT-Fordecyt) project 190966 for its financial support, as well as M. Martinez and R. Tovar from the Institute of Metallurgy UASLP and H. Davila from (Chemistry), S. Mendoza (Environmental), E. Espinoza, M. E. Garcia (Geology) and I. Montes (Engineering) Faculty at UASLP for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Burillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burillo, J.C., Castro-Larragoitia, J., Burillo, G. et al. Removal of arsenic and iron from mine-tailing leachate using chitosan hydrogels synthesized by gamma radiation. Environ Earth Sci 76, 450 (2017). https://doi.org/10.1007/s12665-017-6780-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6780-9

Keywords

Navigation