Skip to main content
Log in

Preparation of Pectin–Acrylamide–(Vinyl phosphonic acid) hydrogel and its selective adsorption of metal ions

  • ORIGINAL PAPER
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Selective metal adsorption is a prominent and novel field in adsorption science where functional hydrogels are playing vital roles. The current study is mainly focused on the synthesis of Pectin–Acrylamide–Vinyl phosphonic acid hydrogels (Pectin–AAm–VPA) and the selective adsorption of metal ions from the solution of multielement. The hydrogels were prepared by applying gamma radiation of different doses ranging from 5 to 50 kGy where 20 kGy was optimized based on the gel content and the equilibrium swelling analysis. The functional groups of the hydrogel were identified by FTIR spectroscopic analysis. Thermal properties—glass transition and melting temperature of the gel were investigated by DSC thermogram. It was an amazing finding that the hydrogels show selective adsorption toward Al, Fe, Ga, In, Mo, and Bi metal ions from the solution containing 27 metal ions. The surface of the gels before and after metal adsorption was inspected using SEM supported by EDS and confirmed the selective adsorption. Metal ions were desorbed successfully in 5% nitric acid. Finally, it can be stated that the Pectin–AAm–VPA hydrogels can effectively be used for selective adsorption of Al, Fe, Ga, In, Mo, and Bi metal ions from the multielement solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8

Similar content being viewed by others

Dataset

BHUYAN, MD (2022), “Pectin-Acrylamide-VinylPhosphonic acid hydrogel”, Mendeley Data, V1, https://doi.org/10.17632/9t93wv5t9f.1.

References

  1. Bhuyan MM, Adala OB, Okabe H, Hidaka Y, Hara K (2019) Selective adsorption of trivalent metal ions from multielement solution by using gamma radiation-induced pectin-acrylamide-(2-Acrylamido-2-methyl-1-propanesulfonic acid) hydrogel. J Environ Chem Eng 7. https://doi.org/10.1016/j.jece.2018.102844.

  2. Sanganyado E, Chingono KE, Gwenzi W, Chaukura N, Liu W (2021) Organic pollutants in deep sea: occurrence, fate, and ecological implications. Water Res 205:117658. https://doi.org/10.1016/j.watres.2021.117658

    Article  CAS  PubMed  Google Scholar 

  3. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  PubMed  Google Scholar 

  4. Rosales E, Ferreira L, Sanromán MÁ, Tavares T, Pazos M (2015) Enhanced selective metal adsorption on optimised agroforestry waste mixtures. Bioresour Technol 182:41–49. https://doi.org/10.1016/j.biortech.2015.01.094

    Article  CAS  PubMed  Google Scholar 

  5. Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

    Article  CAS  PubMed  Google Scholar 

  6. Kang T, Park Y, Yi J (2004) Highly selective adsorption of Pt2+ and Pd2+ using thiol-functionalized mesoporous silica. Ind Eng Chem Res 43:1478–1484. https://doi.org/10.1021/ie030590k

    Article  CAS  Google Scholar 

  7. Chand R, Watari T, Inoue K, Kawakita H, Luitel HN, Parajuli D, Torikai T, Yada M (2009) Selective adsorption of precious metals from hydrochloric acid solutions using porous carbon prepared from barley straw and rice husk. Miner Eng 22:1277–1282. https://doi.org/10.1016/j.mineng.2009.07.007

    Article  CAS  Google Scholar 

  8. Chen X, Lam KF, Mak SF, Yeung KL (2011) Precious metal recovery by selective adsorption using biosorbents. J Hazard Mater 186:902–910. https://doi.org/10.1016/j.jhazmat.2010.11.088

    Article  CAS  PubMed  Google Scholar 

  9. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433. https://doi.org/10.1016/j.msec.2015.07.053

    Article  CAS  Google Scholar 

  10. Richbourg NR, Peppas NA (2020) The swollen polymer network hypothesis: quantitative models of hydrogel swelling, stiffness, and solute transport. Prog Polym Sci 105:101243. https://doi.org/10.1016/j.progpolymsci.2020.101243

    Article  CAS  Google Scholar 

  11. Liu P, Jiang L, Zhu L, Guo J, Wang A (2015) Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Ind Eng Chem 23:188–193. https://doi.org/10.1016/j.jiec.2014.08.014

    Article  CAS  Google Scholar 

  12. Rosiak JM, Ulański P (1999) Synthesis of hydrogels by irradiation of polymers in aqueous solution. Radiat Phys Chem 55:139–151. https://doi.org/10.1016/S0969-806X(98)00319-3

    Article  CAS  Google Scholar 

  13. Fekete T, Borsa J, Takács E, Wojnárovits L (2017) Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem Cent J 11:1–10. https://doi.org/10.1186/s13065-017-0273-5

    Article  CAS  Google Scholar 

  14. Sayed A, Hany F, Abdel-Raouf MES, Mahmoud GA (2022) Gamma irradiation synthesis of pectin- based biohydrogels for removal of lead cations from simulated solutions. J Polym Res 29. https://doi.org/10.1007/s10965-022-03219-8.

  15. Zainal SH, Mohd NH, Suhaili N, Anuar FH, Lazim AM, Othaman R (2021) Preparation of cellulose-based hydrogel: a review. J Mater Res Technol 10:935–952. https://doi.org/10.1016/j.jmrt.2020.12.012

    Article  CAS  Google Scholar 

  16. Wang M, Xu L, Zhai M, Peng J, Li J, Wei G (2008) γ-ray radiation-induced synthesis and Fe(III) ion adsorption of carboxymethylated chitosan hydrogels. Carbohydr Polym 74:498–503. https://doi.org/10.1016/j.carbpol.2008.04.008

    Article  CAS  Google Scholar 

  17. Lin T, Bai Q, Peng J, Xu L, Li J, Zhai M (2018) One-step radiation synthesis of agarose/polyacrylamide double-network hydrogel with extremely excellent mechanical properties. Carbohydr Polym 200:72–81. https://doi.org/10.1016/j.carbpol.2018.07.070

    Article  CAS  PubMed  Google Scholar 

  18. Sharma K, Kaith BS, Kumar V, Kalia S, Kumar V, Swart HC (2014) Synthesis and biodegradation studies of gamma irradiated electrically conductive hydrogels. Polym Degrad Stab 107:166–177. https://doi.org/10.1016/j.polymdegradstab.2014.05.014

    Article  CAS  Google Scholar 

  19. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  20. MacArie L, Ilia G (2010) Poly(vinylphosphonic acid) and its derivatives. Prog Polym Sci 35:1078–1092. https://doi.org/10.1016/j.progpolymsci.2010.04.001

    Article  CAS  Google Scholar 

  21. Bingöl B, Meyer WH, Wagner M, Wegner G (2006) Synthesis, microstructure, and acidity of poly(vinylphosphonic acid). Macromol Rapid Commun 27:1719–1724. https://doi.org/10.1002/marc.200600513

    Article  CAS  Google Scholar 

  22. Nakamae K, Miyata T, Hoffman AS (1992) Swelling behavior of hydrogels containing phosphate groups. Die Makromol Chemie 193:983–990. https://doi.org/10.1002/macp.1992.021930414/abstract

    Article  CAS  Google Scholar 

  23. Dey RE, Zhong X, Youle PJ, Wang QG, Wimpenny I, Downes S, Hoyland JA, Watts DC, Gough JE, Budd PM (2016) Synthesis and characterization of Poly(vinylphosphonic acid-co-acrylic acid) copolymers for application in bone tissue scaffolds. Macromolecules 49:2656–2662. https://doi.org/10.1021/acs.macromol.5b02594

    Article  CAS  Google Scholar 

  24. Bingöl B, Strandberg C, Szabo A, Wegner G (2008) Copolymers and hydrogels based on vinylphosphonic acid. Macromolecules 41:2785–2790. https://doi.org/10.1021/ma702807a

    Article  CAS  Google Scholar 

  25. Bhuyan MM, Okabe H, Hidaka Y, Hara K (2018) Pectin-[(3-acrylamidopropyl) trimethylammonium chloride-co-acrylic acid] hydrogel prepared by gamma radiation and selectively silver (Ag) metal adsorption. J Appl Polym Sci 135. https://doi.org/10.1002/app.45906.

  26. Cruz-Lopes LP, Macena M, Esteves B, Guiné RPF (2021) Ideal pH for the adsorption of metal ions Cr6+, Ni2+, Pb2+in aqueous solution with different adsorbent materials. Open Agric 6:115–123. https://doi.org/10.1515/opag-2021-0225

    Article  Google Scholar 

  27. Pourjavadi A, Soleyman R, Bardajee GR, Seidi F (2010) γ-irradiation synthesis of a smart hydrogel: optimization using taguchi method and investigation of its swelling behavior. Sci Iran 17:15–23

    CAS  Google Scholar 

  28. Nasef MM, Güven O (2012) Radiation-grafted copolymers for separation and purification purposes: status, challenges and future directions. Prog Polym Sci 37:1597–1656. https://doi.org/10.1016/j.progpolymsci.2012.07.004

    Article  CAS  Google Scholar 

  29. Chmielewski AG, Haji-Saeid M, Ahmed S (2005) Progress in radiation processing of polymers. Nucl Instruments Methods Phys Res B Beam Interact Mater Atoms 236:44–54. https://doi.org/10.1016/j.nimb.2005.03.247.

  30. Skinner ER, Kertesz ZI (1960) The effect of gamma radiation on the structure of pectin. An electrophoretic study. J Polym Sci 47:99–109. https://doi.org/10.1002/pol.1960.1204714910.

  31. Gorna K, Gogolewski S (2003) The effect of gamma radiation on molecular stability and mechanical properties of biodegradable polyurethanes for medical applications. Polym Degrad Stab 79:465–474. https://doi.org/10.1016/S0141-3910(02)00362-2

    Article  CAS  Google Scholar 

  32. Plaček V, Bartoníček B, Hnát V, Otáhal B (2003) Dose rate effects in radiation degradation of polymer-based cable materials. Nucl Instruments Methods Phys Res B Beam Interact Mater Atoms 208:448–453. https://doi.org/10.1016/S0168-583X(03)00626-8.

  33. Iijima M, Nakamura K, Hatakeyama T, Hatakeyama H (2000) Phase transition of pectin with sorbed water. Carbohydr Polym 41:101–106. https://doi.org/10.1016/S0144-8617(99)00116-2

    Article  CAS  Google Scholar 

  34. Jankovský O, Šimek P, Klímová K, Sedmidubský D, Pumera M, Sofer Z (2015) Highly selective removal of Ga3+ ions from Al3+/Ga3+ mixtures using graphite oxide. Carbon N Y 89:121–129. https://doi.org/10.1016/j.carbon.2015.03.025

    Article  CAS  Google Scholar 

  35. Li W, Guo J, Du H, Wang D, Cao J, Wang Z (2022) Selective removal of aluminum ions from rare earth solutions by using ion-imprinted polymers. Sep Purif Technol 286:120486. https://doi.org/10.1016/j.seppur.2022.120486

    Article  CAS  Google Scholar 

  36. Dong C, Zhang F, Pang Z, Yang G (2016) Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent. Carbohydr Polym 151:230–236. https://doi.org/10.1016/j.carbpol.2016.05.066

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MMB contributed to conceptualization, investigation, methodology, validation, data curation, funding acquisition, and writing—original draft. MJ contributed to writing—review and editing. J-HJ contributed to review, editing and Advisor.

Corresponding author

Correspondence to Md Murshed Bhuyan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuyan, M.M., Jophous, M. & Jeong, JH. Preparation of Pectin–Acrylamide–(Vinyl phosphonic acid) hydrogel and its selective adsorption of metal ions. Polym. Bull. 80, 4625–4641 (2023). https://doi.org/10.1007/s00289-022-04649-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04649-6

Keywords

Navigation