Skip to main content
Log in

Preparation and Characterization of Gamma Radiation Assisted Poly-Vinyl Alcohol/Acrylic Acid/Poly-4-Styrene Sulphonic Acid Based Hydrogel: Application for Textile Dye Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study, poly-vinyl alcohol (PVA), acrylic acid (AAc), and poly-4-styrene sulphonic acid (PSSa) were copolymerized in different compositions using gamma irradiation to form the hydrogel. FTIR study showed that AAc act as a crosslinker for the formation of transparent hydrogel and optimization study affirmed that crosslinking density increased with the increase of AAc content. The swelling study revealed that hydrogel with 30% acrylic acid and 70% PSSa (PAC30PS70) exhibited the best swelling properties with a maximum diffusion coefficient of 2.94 cm2s−1 and the diffusion of water inside the hydrogel was found to be of Fickian character. Methylene blue was used as a model dye for sorption and the effect of sorbent dosage, contact time, initial dye concentration, pH, and temperature on sorption were observed for the study. The maximum sorption capacity of 131.58 mg/g was observed at normal temperature, neutral pH, and hydrogel dosage of 0.05 grams (g). The sorption of dye data best fitted with pseudo first-order kinetic equation and Boyd kinetic plot indicates that the adsorption process was controlled by film diffusion (external diffusion). The negative values of ΔH (− 18.57 kjmol−1) from the thermodynamics study, confirmed that the adsorption process was exothermic and more favorable at lower temperature. The reusability study specified that the sorption capacity gets reduced from 90.96 to 57.45% after four consecutive cycles ensuring that the hydrogel can be effectively utilized as recyclable adsorbents for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this manuscript.

References

  1. Khan MI, Min TK, Azizli K, Sufian S, Ullah H, Man Z (2015) Effective removal of methylene blue from water using phosphoric acid based geopolymers. RSC Adv 5:61410–61420. https://doi.org/10.1039/c5ra08255b

    Article  CAS  Google Scholar 

  2. Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255. https://doi.org/10.1016/S0960-8524(00)00080-8

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, Rafatullah M (2015) Recent advances in new generation dye removal technologies: novel search of approaches to reprocess waste water. RSC Adv. https://doi.org/10.1039/C4RA16959J

    Article  Google Scholar 

  4. Singh J, Dhaliwal AS (2020) Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst. Environ Technol 41(12):1520–1534. https://doi.org/10.1080/09593330.2018.1540663

    Article  CAS  PubMed  Google Scholar 

  5. Ahammed KR, Ashaduzzaman M, Paul SC, Nath MR, Bhowmik S, Saha O, Rahaman MM, Bhowmik S, Aka TD (2020) Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity. SN Appl Sci. https://doi.org/10.1007/s42452-020-2762-8

    Article  Google Scholar 

  6. Bhuiyan MSH, Miah MY, Paul SC, Aka TD, Saha O, Rahaman MM, Sharif MJI, Habiba O, Ashaduzzaman M (2020) Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract: application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity. Heliyon 6(8):e04603. https://doi.org/10.1016/j.heliyon.2020.e04603

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun Y, Chen Z, Wu G, Wu Q, Zhang F, Niu Z, Hu HY (2016) Characteristics of water quality of municipal wastewater treatment plants in China: implications for resources utilization and management. J Clean Prod. https://doi.org/10.1016/j.jclepro.2016.05.068

    Article  Google Scholar 

  8. Seow TW, Lim CK (2016) Removal of dye by adsorption: a review. Int J Appl Eng Res 11(4):2675–2679

    Google Scholar 

  9. Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072

    Article  CAS  PubMed  Google Scholar 

  10. Li Z, Chang PH, Jiang WT, Jean JS, Hong H (2011) Mechanism of methylene blue removal from water by swelling clays. Chem Eng J 168:1193–1200. https://doi.org/10.1016/j.cej.2011.02.009

    Article  CAS  Google Scholar 

  11. Mohammadi AA, Alinejad A, Kamarehie B, Javan S, Ghaderpoury A, Ahmadpour M, Ghaderpoori M (2017) Metal-organic framework Uio-66 for adsorption of methylene blue dye from aqueous solutions. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1289-z

    Article  Google Scholar 

  12. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 53:34–46. https://doi.org/10.1016/j.carbpol.2016.06.104

    Article  CAS  Google Scholar 

  13. Elbedwehy AM, Atta AM (2020) Novel superadsorbent highly porous hydrogel based on arabic gum and acrylamide grafts for fast and efficient methylene blue removal. Polymers (Basel). https://doi.org/10.3390/polym12020338

    Article  Google Scholar 

  14. Khan M, Lo IMC (2016) A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water Res 106:259–271

    Article  CAS  PubMed  Google Scholar 

  15. Mok CF, Ching YC, Muhamad F, Abu Osman NA, Hai ND, Che Hassan CR (2020) Adsorption of dyes using poly(vinyl alcohol) (PVA) and PVA-based polymer composite adsorbents: a review. J Polym Environ. https://doi.org/10.1007/s10924-020-01656-4

    Article  Google Scholar 

  16. Zheng Y, Liu Y, Wang A (2011) Fast removal of ammonium ion using a hydrogel optimized with response surface methodology. Chem Eng J. https://doi.org/10.1016/j.cej.2011.05.026

    Article  Google Scholar 

  17. Kamal H (2014) Removal of Methylene Blue from aqueous solutions using composite hydrogel prepared by gamma irradiation. J Am Sci 10(4):125–133

    Google Scholar 

  18. Karadaǧ E, Kundakci S (2013) Water and dye uptake studies of acrylamide/4-styrenesulfonic acid sodium salt copolymers and semi-interpenetrating polymer networks composed of gelatin and/or PVA. Adv Polym Technol. https://doi.org/10.1002/adv.21299

    Article  Google Scholar 

  19. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6(2):105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  20. Jipa IM, Stroescu M, Stoica-Guzun A, Dobre T, Jinga S, Zaharescu T (2012) Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose. Nucl Instr Methods Phys Res Sect B. https://doi.org/10.1016/j.nimb.2012.02.024

    Article  Google Scholar 

  21. Clough RL (2001) High-energy radiation and polymers: a review of commercial processes and emerging applications. Nucl Instr Methods Phys Res Sect B. https://doi.org/10.1016/S0168-583X(01)00966-1

    Article  Google Scholar 

  22. Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Membr Sci. https://doi.org/10.1016/j.memsci.2004.02.005

    Article  Google Scholar 

  23. Dafader NC, Hague ME, Akhtar F (2005) Synthesis of hydrogel from aqueous solution of poly(vinyl pyrrolidone) with agar by ramma-rays irradiation. Polym - Plast Technol Eng. https://doi.org/10.1081/PTE-200048678

    Article  Google Scholar 

  24. Mortuza MF, Lepore L, Khedkar K, Thangam S, Nahar A, Jamil HM, Bandi L, Alam MK (2018) Commissioning dosimetry and in situ dose mapping of a semi-industrial cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2017.08.022

    Article  Google Scholar 

  25. Liu R, Xu X, Zhuang X, Cheng B (2014) Solution blowing of chitosan/PVA hydrogel nanofiber mats. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2013.10.056

    Article  PubMed  Google Scholar 

  26. Lee W, Lee TG, Koh WG (2007) Grafting of poly(acrylic acid) on the poly(ethylene glycol) hydrogel using surface-initiated photopolymerization for covalent immobilization of collagen. J Ind Eng Chem 13(7):1195–1200

    CAS  Google Scholar 

  27. Irani M, Ismail H, Ahmad Z (2013) Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym Test. https://doi.org/10.1016/j.polymertesting.2013.01.001

    Article  Google Scholar 

  28. Xu L, Li X, Zhai M, Huang L, Peng J, Li J, Wei G (2007) Ion-specific swelling of poly (styrene sulfonic acid) hydrogel. J Phys Chem B. https://doi.org/10.1021/jp067707d

    Article  PubMed  PubMed Central  Google Scholar 

  29. Croitoru C, Pop MA, Bedo T, Cosnita M, Roata IC, Hulka I (2020) Physically crosslinked poly (vinyl alcohol)/kappa-carrageenan hydrogels: structure and applications. Polymers (Basel). https://doi.org/10.3390/polym12030560

    Article  Google Scholar 

  30. Nakhjiri MT, Marandi GB, Kurdtabar M (2018) Poly(AA-co- VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: isotherms, kinetics and thermodynamic investigation. Int J Biol Macromol 117:152–166

    Article  CAS  PubMed  Google Scholar 

  31. Sudhakar YN, Krishna Bhat D, Selvakumar M (2014) Miscibility studies of starch and poly(4-styrene sulfonic acid) blend system. Int J Chem Technol Res 6(7):3589–3602

    CAS  Google Scholar 

  32. Sheha E, Nasr M, El-Mansy MK (2013) Characterization of poly (vinyl alcohol)/poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) polymer blend: structure, optical absorption, electrical and dielectric properties. Phys Scr. https://doi.org/10.1088/0031-8949/88/03/035701

    Article  Google Scholar 

  33. Fitzgerald MM, Bootsma K, Berberich JA, Sparks JL (2015) Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromol. https://doi.org/10.1021/bm501845j

    Article  Google Scholar 

  34. Mamada A, Tanaka T, Kungwatchakun D, Irie M (1990) Photoinduced phase transition of gels. Macromolecules. https://doi.org/10.1021/ma00207a046

    Article  Google Scholar 

  35. Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature. https://doi.org/10.1038/346345a0

    Article  PubMed  Google Scholar 

  36. Manaila E, Craciun G, Ighigeanu D, Cimpeanu C, Barna C, Fugaru V (2017) Hydrogels synthesized by electron beam irradiation for heavy metal adsorption. Materials (Basel). https://doi.org/10.3390/ma10050540

    Article  Google Scholar 

  37. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J (English Ed) 19(5):375–398

    CAS  Google Scholar 

  38. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46

    Article  CAS  PubMed  Google Scholar 

  39. Miyah Y, Lahrichi A, Idrissi M, Boujraf S, Taouda H, Zerrouq F (2017) Assessment of adsorption kinetics for removal potential of crystal violet dye from aqueous solutions using moroccan pyrophyllite. J Assoc Arab Univ Basic Appl Sci. https://doi.org/10.1016/j.jaubas.2016.06.001

    Article  Google Scholar 

  40. Al-Degs YS, El-Barghouthi MI, El-Sheikh AH, Walker GM (2008) Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dye Pigment. https://doi.org/10.1016/j.dyepig.2007.03.001

    Article  Google Scholar 

  41. Yuan Z, Wang J, Wang Y, Liu Q, Zhong Y, Wang Y, Li L, Lincoln SF, Guo X (2019) Preparation of a poly(acrylic acid) based hydrogel with fast adsorption rate and high adsorption capacity for the removal of cationic dyes. RSC Adv. https://doi.org/10.1039/c9ra03077h

    Article  PubMed  PubMed Central  Google Scholar 

  42. Elliott JE, MacDonald M, Nie J, Bowman CN (2004) Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2003.12.040

    Article  Google Scholar 

  43. Hu XS, Liang R, Sun G (2018) Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution. J Mater Chem A. https://doi.org/10.1039/c8ta04722g

    Article  Google Scholar 

  44. Wang Y, Shen Y, Zhang Y, Yue B, Wu C (2006) pH-sensitive polyacrylic acid (PAA) hydrogels trapped with polysodium-p-styrenesulfonate (PSS). J Macromol Sci Part B. https://doi.org/10.1080/00222340600770111

    Article  Google Scholar 

  45. Yu C, Wang F, Zhang C, Fu S, Lucia LA (2016) The synthesis and absorption dynamics of a lignin-based hydrogel for remediation of cationic dye-contaminated effluent. React Funct Polym 106:137–142

    Article  CAS  Google Scholar 

  46. Abdel-Bary EM, Elbedwehy AM (2018) Graft copolymerization of polyacrylic acid onto Acacia gum using erythrosine–thiourea as a visible light photoinitiator: application for dye removal. Polym Bull. https://doi.org/10.1007/s00289-017-2205-x

    Article  Google Scholar 

  47. Mechev VV (2000) Diffusion in solids. Russ Metall. https://doi.org/10.2320/materia.36.851

    Article  Google Scholar 

  48. Sanchez LM, Ollier RP, Alvarez VA (2019) Sorption behavior of polyvinyl alcohol/bentonite hydrogels for dyes removal. J Polym Res. https://doi.org/10.1007/s10965-019-1807-4

    Article  Google Scholar 

  49. Yang X, Li Y, Du Q, Sun J, Chen L, Hu S, Wang Z, Xia Y, Xia L (2015) Highly effective removal of basic fuchsin from aqueous solutions by anionic polyacrylamide/graphene oxide aerogels. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2015.04.042

    Article  PubMed  Google Scholar 

  50. Dahri MK, Kooh MRR, Lim LBL (2014) Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J Environ Chem Eng 2(3):1434–1444. https://doi.org/10.1016/j.jece.2014.07.008

    Article  CAS  Google Scholar 

  51. Hu Y, Guo T, Ye X, Li Q, Guo M, Liu H, Wu Z (2013) Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem Eng J 228:392–397. https://doi.org/10.1016/j.cej.2013.04.116

    Article  CAS  Google Scholar 

  52. Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D (2012) Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf B. https://doi.org/10.1016/j.colsurfb.2011.10.019

    Article  Google Scholar 

  53. Auta M, Hameed BH (2012) Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem Eng J. https://doi.org/10.1016/j.cej.2012.05.075

    Article  Google Scholar 

  54. Nakhjiri MT, Marandi GB, Kurdtabar M (2018) Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: isotherms, kinetics and thermodynamic investigation. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.05.140

    Article  PubMed  Google Scholar 

  55. Kumar M, Tamilarasan R, Arthanareeswaran G, Ismail AF (2015) Optimization of methylene blue using Ca2+ and Zn2+ bio-polymer hydrogel beads: a comparative study. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2015.04.007

    Article  PubMed  Google Scholar 

  56. Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromol 10(1):9–18. https://doi.org/10.1021/bm801103c

    Article  CAS  Google Scholar 

  57. Kooh MRR, Dahri MK, Lim LBL (2017) Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis. Appl Water Sci. https://doi.org/10.1007/s13201-016-0496-y

    Article  Google Scholar 

  58. Melo BC, Paulino FAA, Cardoso VA, Pereira AGB, Fajardo AR, Rodrigues FHA (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly(acrylic acid) hydrogel. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2017.10.079

    Article  PubMed  Google Scholar 

  59. Liu C, Liu H, Xiong T, Xu A, Pan B, Tang K (2018) Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal. Polymers (Basel). https://doi.org/10.3390/polym10080835

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors like to thanks all the staffs of Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, for their assistance in doing all the experiments. The authors also like to give thanks to the staffs of Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, for giving all the support during the research works.

Funding

There was no funding for the research work.

Author information

Authors and Affiliations

Authors

Contributions

SCP, MARA; Methodology: MSR, MSA, SCP; Formal analysis and investigation: MARA, SCP; Writing—original draft preparation: SCP, MARA; Writing—review and editing: SS, SMMH, TA, MAG, MSA; Supervision: MSA, SCP, MSR.

Corresponding authors

Correspondence to Shujit Chandra Paul or Md. Saifur Rahaman.

Ethics declarations

Conflict of interest

All the authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2011 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azady, M.A.R., Alam, M.S., Paul, S.C. et al. Preparation and Characterization of Gamma Radiation Assisted Poly-Vinyl Alcohol/Acrylic Acid/Poly-4-Styrene Sulphonic Acid Based Hydrogel: Application for Textile Dye Removal. J Polym Environ 29, 520–537 (2021). https://doi.org/10.1007/s10924-020-01897-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01897-3

Keywords

Navigation