Skip to main content
Log in

Fabrication of two hydrogels composites through the coupling of gelatin with ethyl vanillin/polyvinyl alcohol using electron beam irradiation for ciprofloxacin delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A topical wound dressing system containing ciprofloxacin was designed through the fabrication of two hydrogels by coupling gelatin with ethyl vanillin and its composite with polyvinyl alcohol using electron beam irradiation. The composite hydrogel films were loaded with ciprofloxacin by the equilibrium swelling method and its release was investigated in various mediums. The influence of factors affecting the loading and release of the drug as well as the morphology and chemical structure of hydrogels were considered. The amount of drug released from composite hydrogels to simulated wound fluid was more than that in pH of 2.2 solution. The loaded drug on the composite hydrogels was slowly released in the simulated wound fluid medium; thus, about 90% of it was released in 19.5 h. The kinetics and mechanism of ciprofloxacin release from composite hydrogels in different media followed the Higuchi or Korsmeyer–Peppas model and non-Fickian diffusion mechanism, respectively. The cytotoxicity analyses verified the non-toxicity of the synthesized hydrogels. Also, for loaded composite hydrogels, acceptable growth inhibition was observed toward Staphylococcus aureus and Escherichia coli bacteria. Based on these results, the synthesized hydrogels seem to be useful for the fabrication of antibacterial polymeric wound dressing with slow drug release of up to 19.5 h.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khan SA, Ali Shah LA, Shah M (2021) Engineering of 3D polymer network hydrogels for biomedical applications: a review. Polym Bull. https://doi.org/10.1007/s00289-021-03638-5

    Article  Google Scholar 

  2. Ullah F, Othman MBH, Javed F et al (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  CAS  Google Scholar 

  3. Abu-Elella MH, Hanna DH, Mohamed RR, Sabaa MW (2022) Synthesis of xanthan gum/trimethyl chitosan interpolyelectrolyte complex as pH-sensitive protein carrier. Polym Bull 79:2501–2522

    Article  CAS  Google Scholar 

  4. Ngwuluka NC, Abu-thabit N, Uwaezuoke O, Erebor JO, Ilomuanya M, Mohamed RR, Soliman MA, Abu-Elella MH (2021) Natural Polymers in Micro-and Nanoencapsulation for Therapeutic and Diagnostic Applications: Part II: Polysaccharides and proteins. In: Abu-thabit N (ed) Nano- and microencapsulation techniques and applications. IntechOpen, UK, pp 55–98

  5. Sahiner M, Alpaslan D, Bitlisli BO (2014) Collagen-based hydrogel films as drug-delivery devices with antimicrobial properties. Polym Bull 71:3017–3033

    Article  CAS  Google Scholar 

  6. Pettinelli N, Rodríguez-Llamazares S, Bouza R et al (2020) Carrageenan-based physically crosslinked injectable hydrogel for wound healing and tissue repairing applications. Int J Pharm 589:119828

    Article  CAS  PubMed  Google Scholar 

  7. Gunes OC, Albayrak AZ (2020) Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym Bull 78:6409–6428

    Article  Google Scholar 

  8. Dadashzadeh A, Imani R, Moghassemi S, Omidfar K, Abolfathi N (2020) Study of hybrid alginate/gelatin hydrogel-incorporated niosomal Aloe vera capable of sustained release of Aloe vera as potential skin wound dressing. Polym Bull 77:387–403

    Article  CAS  Google Scholar 

  9. Relleve LS, Gallardo AKR, Tecson MG, Luna JAA (2021) Biocompatible hydrogels of carboxymethyl hyaluronic acid prepared by radiation-induced crosslinking. Radiat Phys Chem 179:109104

    Article  Google Scholar 

  10. Rodoplu S, Celik BE, Kocaag B et al (2021) Dual effect of procaine-loaded pectin hydrogels: pain management and in vitro wound healing. Polym Bull 78:2227–2250

    Article  CAS  Google Scholar 

  11. Zheng X, Zhang Q, Liu J et al (2016) A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure. RSC Adv 6:71999–72007

    Article  CAS  Google Scholar 

  12. Ghosh SK, Das A, Basu A et al (2018) Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release. Int J Biol Macromol 120:1823–1833

    Article  CAS  PubMed  Google Scholar 

  13. Qazvini NT, Zinatloo S (2011) Synthesis and characterization of gelatin nanoparticles using CDI/NHS as a non-toxic cross-linking system. J Mater Sci Mater Med 22:63–69

    Article  PubMed  Google Scholar 

  14. Shetye SP, Godbole A, Bhilegaokar S et al (2015) Hydrogels: introduction, preparation, characterization and applications. Hum J 1:47–71

    Google Scholar 

  15. Tavakol M, Dehshiri S, Vasheghani-Farahani E (2016) Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth. Carbohydr Polym 152:504–509

    Article  CAS  PubMed  Google Scholar 

  16. Prusty K, Swain SK (2018) Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater Sci Eng C 85:130–141

    Article  CAS  Google Scholar 

  17. Zhao L, Xu L, Mitomo H et al (2006) Synthesis of pH-sensitive PVP/CM-chitosan hydrogels with improved surface property by irradiation. Carbohydr Polym 64:473–480

    Article  CAS  Google Scholar 

  18. Bardajee GR, Pourjavadi A, Soleyman R et al (2010) Gamma irradiation mediated synthesis of a new superabsorbent hydrogel network based on poly (acrylic acid) grafted onto salep. J Iran Chem Soc 7:652–662

    Article  CAS  Google Scholar 

  19. Zhang S, Wang W, Wang H et al (2014) Synthesis and characterisation of starch grafted superabsorbent via 10 MeV electron-beam irradiation. Carbohydr Polym 101:798–803

    Article  CAS  PubMed  Google Scholar 

  20. Benbettaïeb N, Karbowiak T, Brachais CH et al (2015) Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to crosslink chitosan–gelatin films: a structure–function approach. Eur Polym J 67:113–127

    Article  Google Scholar 

  21. Lević S, Obradović N, Pavlović V et al (2014) Thermal, morphological, and mechanical properties of ethyl vanillin immobilized in polyvinyl alcohol by electrospinning process. J Therm Anal Calorim 118:661–668

    Article  Google Scholar 

  22. Moghaddam RH, Shabani AMH, Dadfarnia S (2019) Synthesis of new hydrogels based on pectin by electron beam irradiation with and without surface modification for methylene blue removal. J Environ Chem Eng 7:102919

    Article  Google Scholar 

  23. Moghaddam RH, Dadfarnia S, Shabani AMH et al (2019) Electron beam irradiation synthesis of porous and non-porous pectin based hydrogels for a tetracycline drug delivery system. Mater Sci Eng C 102:391–404

    Article  Google Scholar 

  24. Moghaddam RH, Dadfarnia S, Shabani AMH et al (2019) Synthesis of composite hydrogel of glutamic acid, gum tragacanth, and anionic polyacrylamide by electron beam irradiation for uranium (VI) removal from aqueous samples: equilibrium, kinetics, and thermodynamic studies. Carbohydr Polym 206:352–361

    Article  CAS  PubMed  Google Scholar 

  25. Pal K, Banthia AK, Majumdar DK (2007) Preparation and characterization of polyvinyl alcohol-gelatin hydrogel membranes for biomedical applications. AAPS PharmSciTech 8:E142–E146

    Article  PubMed Central  Google Scholar 

  26. Singh B, Varshney L, Francis S (2017) Designing sterile biocompatible moxifloxacin loaded trgacanth-PVA-alginate wound dressing by radiation crosslinking method. Wound Med 17:11–17

    Article  Google Scholar 

  27. Hanna DH, Saad GR (2019) Encapsulation of ciprofloxacin within modified xanthan gum-chitosan based hydrogel for drug delivery. Bioorg Chem 84:115–124

    Article  CAS  PubMed  Google Scholar 

  28. Singh B, Varshney L, Francis S (2017) Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiat Phys Chem 135:94–105

    Article  CAS  Google Scholar 

  29. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

  30. Hossieni-Aghdam SJ, Foroughi-Nia B, Zare-Akbari Z et al (2018) Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid. Int J Biol Macromol 107:2436–2449

    Article  CAS  PubMed  Google Scholar 

  31. Singh B, Varshney L, Francis S (2016) Designing tragacanth gum based sterile hydrogel by radiation method for use in drug delivery and wound dressing applications. Int J Biol Macromol 88:586–602

    Article  CAS  PubMed  Google Scholar 

  32. Goda ES, Abu-Elella MH, Sohail M, Singu BS, Pandit B et al (2021) N-methylene phosphonic acid chitosan/graphene sheets decorated with silver nanoparticles as green antimicrobial agents. Int J Biol Macromol 182:680–688

    Article  CAS  PubMed  Google Scholar 

  33. Abu-Elella MH, Sabaa MW, Hanna DH, Abdel-Aziz MM, Mohamed RR (2020) Antimicrobial pH-sensitive protein carrier based on modified xanthan gum. J Drug Deliv Sci Technol 57:101673

    Article  CAS  Google Scholar 

  34. Lu Q, Zhang S, Xiong M et al (2018) One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydr Polym 196:225–232

    Article  CAS  PubMed  Google Scholar 

  35. Bardajee GR, Pourjavadi A, Ghavami S et al (2011) UV-prepared salep-based nanoporous hydrogel for controlled release of tetracycline hydrochloride in colon. J Photochem Photobiol B Biol 102:232–240

    Article  CAS  Google Scholar 

  36. Cortesi R, Nastruzzi C, Davis SS (1998) Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials 19:1641–1649

    Article  CAS  PubMed  Google Scholar 

  37. Jalaja K, Naskar D, Kundu SC et al (2015) Fabrication of cationized gelatin nanofibers by electrospinning for tissue regeneration. RSC Adv 5:89521–89530

    Article  CAS  Google Scholar 

  38. Prusty K, Swain SK (2019) Release of ciprofloxacin drugs by nano gold embedded cellulose grafted polyacrylamide hybrid nanocomposite hydrogels. Int J Biol Macromol 126:765–775

    Article  CAS  PubMed  Google Scholar 

  39. Marchesan S, Qu Y, Waddington LJ et al (2013) Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel. Biomaterials 34:3678–3687

    Article  CAS  PubMed  Google Scholar 

  40. Das D, Pal S (2015) Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin. Int J Biol Macromol 72:171–178

    Article  CAS  PubMed  Google Scholar 

  41. Prusty K, Biswal A, Biswal SB et al (2019) Synthesis of soy protein/polyacrylamide nanocomposite hydrogels for delivery of ciprofloxacin drug. Mater Chem Phys 234:378–389

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shayessteh Dadfarnia or Ali Mohammad Haji Shabani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafezi Moghaddam, R., Dadfarnia, S., Haji Shabani, A.M. et al. Fabrication of two hydrogels composites through the coupling of gelatin with ethyl vanillin/polyvinyl alcohol using electron beam irradiation for ciprofloxacin delivery. Polym. Bull. 80, 8407–8429 (2023). https://doi.org/10.1007/s00289-022-04456-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04456-z

Keywords

Navigation