Skip to main content
Log in

Grafted cellulose: a bio-based polymer for durable applications

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Grafting is one of the best method for the modification of physicochemical properties of the cellulose. The –OH groups present at C2, C3, and C6 atoms of each β-d-glucopyranose units of cellulose chains are the most susceptible active sites for the grafting of many monomer units or polymers for the formation of a variety of cellulose-based graft copolymers with advanced properties and potential applications as compared to the bare cellulose. In this review article, a brief introduction to get an insight into the structural features of cellulose is given. After that, the potential applications and recent advancements of various cellulose graft copolymers made in fields of controlled drug delivery, adsorption of harmful, toxic and non-biodegradable dyes from industrial effluents, sorption of heavy metal ions from aqueous medium, modification of electrolyte, electrodes and separators of the modern age Lithium ion batteries, and fabrication of smart and innovative food packaging materials are reviewed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2

[Reprinted with permission from Ref. [18], © 2009 Elsevier Ltd.]

Fig. 3
Fig. 4

[Reprinted with permission from Ref [34], © The Royal Society of Chemistry 2014]

Fig. 5

[Reprinted with permission from Ref [35], ©2014 Elsevier Ltd]

Fig. 6
Fig. 7

[Reprinted with permission from Ref [55], © 2013 American Chemical Society]

Fig. 8

[Reprinted with permission from Ref. [61], © 2016 Elsevier Ltd.]

Similar content being viewed by others

Abbreviations

AA:

Acrylic acid

AA-g-CLCF:

Acrylic acid-g-cellulosic Luffa cylindrical fiber

AAm:

Acrylamide

AAm-g-HEC:

Acrylamide-g-hydroxyethylcellulose

AASO3H:

2-Acrylamido-2-methylpropane sulfonic acid

AB-93:

Acid blue-93

ABCN:

Azobiscyclohexanecarbonitrile

AN:

Acrylonitrile

ASA:

Aminosalicylic acid

ATPR:

Atom transfer radical polymerization

BC-g-PAA:

Bacterial cellulose-g-poly(acrylic acid)

BEMA:

Bisphenol A ethoxylate (15 EO/phenol) dimethacrylate

BF:

Basic fuchsine

BGE-g-HEC:

Butyl glycidyl ether-g-hydroxyethyl cellulose

BOD:

Biological oxygen demand

BSA:

Bovine serum albumin

CAN:

Ceric ammonium nitrate

CCDA:

Cross-linked cellulose dialdehyde

CD:

Cyclodextrin

Cell-g-PAA-co-AM:

Cellulose-g-poly(acrylic acid-co-acrylamide)

Cell-g-PAm/HBH:

Cellulose-g-polyacrylamide/hydroxyapatite biocomposite hydrogel

CipHCl:

Ciprofloxacin hydrochloride

CMC:

Carboxy methyl cellulose

CMC-g-HPAM:

Hydrolyzed polyacrylamide-g-carboxymethyl cellulose

CMC-g-PAAm:

Carboxymethyl cellulose-g-polyacrylamide

CMC-g-PDMAEMA:

Carboxymethyl cellulose-g-poly(dimethylaminoethyl methacrylate)

CMC-g-PDMAEMA:

Carboxymethylcellulose-g-poly(2-(dimethylamino) ethylmethacrylate)

CMC-g-PHEA:

Carboxymethyl cellulose-g-poly(hydroxyethyl acrylate)

COD:

Chemical oxygen demand

CR:

Congo red

CRP:

Controlled radical polymerization

CV:

Crystal violet

DAA:

N,N-Dimethylacetamide

EC:

Ethyl cellulose

EC–DEC:

Ethylene carbonate–diethyl carbonate

EC-g-PDEAEMA:

Ethyl cellulose-g-poly(2-(diethylamino) ethyl methacrylate)

EC-g-PHEMA-g-PSPMA:

Ethylcellulose-g-poly(2-hydroxyethyl methacrylate)-g-poly(spiropyran ether methacrylate)

EC-g-PPEGMA:

Ethyl cellulose-g-poly(poly(ethylene glycol) methyl ether methacrylate)

ECH:

Epichlorohydrin

EE:

Encapsulation efficiency

GA:

Glycidyl acrylate

GMA:

Glycidyl methacrylate

GMA/DTPA-g-cellulose:

Glycidyl methacrylate/diethylenetriamine pentaacetic acid-g-cellulose

HEC-g-LANM:

Hydroxyethylcellulose-g-linoleic acid nano micelles

HEMA:

2-Hydroxy methacrylate

HPC:

Hydroxypropylcellulose

HPMC-g-PAM:

Hydroxypropyl methyl cellulose-g-polyacrylamide

KET:

Ketoprofen

LCST:

Lower critical solution temperature

LE:

Loading efficiency

MA/Aam-g-LCF:

Methyl acrylate/acrylamide-g-Luffa cylindrical fiber

MB:

Methylene blue

MBA:

N,N′-Methylene bisacrylamide

MCA-E0.7/CMC-g-PDMDAAC:

Monochloroacetic acid-modified epichlorohydrin cross-linked carboxymethyl cellulose-g-dimethyl diallyl ammonium chloride

MC-g-A/GM:

Methyl cellulose-g-acrylamide/gelatin microspheres

MFC:

Microfibrillated cellulose

MG:

Malachite green

MMA:

Methyl methacrylate

MO:

Methyl orange

NaPAA-g-CMC:

Poly(acrylic acid sodium)-g-carboxymethyl cellulose

NFC:

Nanofibrillated cellulose

NFD:

Nifedipine

NMP:

Nitroxide-mediated polymerization

NR:

Nile red

ODDMAC:

Octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride

OR-II:

Orange red-II

PAA:

Poly(acrylic acid sodium)

PAM:

Polyacrylamide

PBS:

Phosphate buffer solution

PDEAEMA:

Poly(2-(diethylamino) ethyl methacrylate)

PE:

Polyethylene

PEGMA:

Poly(ethylene glycol) methyl ether methacrylate)

PNIPAAm:

Poly(N-isopropylacrylamide)

PP:

Polypropylene

PSPMA:

Poly(spiropyran ether methacrylate)

PTFE:

Poly(tetrafluoroethylene)

PVC:

Polyvinyl chloride

PVDF-HPF:

Poly(vinylidene fluoride-co-hexafluoropropylene)

RAFT:

Reversible addition fragmentation chain transfer

RB-2:

Reactive blue-2

RIF:

Rifampicin

ROP:

Ring-opening polymerization

SET-LRP:

Single-electron transfer living radical polymerization

SPMA:

Spiropyran ether methacrylate

THA:

Theophylline

THF:

Tetrahydrofuran

References

  1. Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173. doi:10.1016/j.jrras.2014.02.003

    Article  CAS  Google Scholar 

  2. Bali G, Meng X, Deneff JI, Sun Q, Ragauskas AJ (2015) The effect of alkaline pretreatment methods on cellulose structure and accessibility. Chemsuschem 8:275–279. doi:10.1002/cssc.201402752

    Article  CAS  PubMed  Google Scholar 

  3. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  PubMed  Google Scholar 

  4. Koh J (2011) Dyeing of cellulosic fibres. In: Clark M (ed) Handbook of Textile and industrial dyeing. Woodhead Publishing Limited, Sawston, pp 129–146

    Chapter  Google Scholar 

  5. Oehme DP, Downton MT, Doblin MS, Wagner J, Gidley MJ, Bacic A (2015) Unique aspects of the structure and dynamics of elementary iβ cellulose microfibrils revealed by computational simulations. Plant Physiol 168:3–17. doi:10.1104/pp.114.254664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hansson S, Trouillet V, Tischer T, Goldmann AS, Carlmark A, Barner-Kowollik C, Malmström E (2013) Grafting efficiency of synthetic polymers onto biomaterials: a comparative study of grafting- from versus grafting- to. Biomacromolecules 14:64–74. doi:10.1021/bm3013132

    Article  CAS  PubMed  Google Scholar 

  7. Carlmark A (2013) Tailoring cellulose surfaces by controlled polymerization methods. Macromol Chem Phys 214:1539–1544. doi:10.1002/macp.201300272

    Article  CAS  Google Scholar 

  8. Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064. doi:10.1039/b808639g

    Article  CAS  PubMed  Google Scholar 

  9. Bertoldo M, Zampano G, La Terra F, Villari V, Castelvetro V (2011) Amphiphilic amylose-g-poly(meth)acrylate copolymers through “click” onto grafting method. Biomacromolecules 12:388–398. doi:10.1021/bm101143q

    Article  CAS  PubMed  Google Scholar 

  10. Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: methods, properties and applications. Polymer (United Kingdom) 70:A1–A16. doi:10.1016/j.polymer.2015.05.041

    Article  CAS  Google Scholar 

  11. Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193. doi:10.1016/j.progpolymsci.2008.06.002

    Article  CAS  Google Scholar 

  12. Bhattacharya A, Misra BN (2004) Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog Polym Sci 29:767–814. doi:10.1016/j.progpolymsci.2004.05.002

    Article  CAS  Google Scholar 

  13. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198. doi:10.1021/cr940351u

    Article  CAS  PubMed  Google Scholar 

  14. Fomina N, Sankaranarayanan J, Almutairi A (2012) Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 64:1005–1020. doi:10.1016/j.addr.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Tan J, Kang H, Ma L, Jin X, Liu R, Huang Y (2011) Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP. Carbohydr Polym 84:195–202. doi:10.1016/j.carbpol.2010.11.023

    Article  CAS  Google Scholar 

  16. Mohd Amin MCI, Ahmad N, Halib N, Ahmad I (2012) Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydr Polym 88:465–473. doi:10.1016/j.carbpol.2011.12.022

    Article  CAS  Google Scholar 

  17. Tan J, Li Y, Liu R, Kang H, Wang D, Ma L, Liu W, Wu M, Huang Y (2010) Micellization and sustained drug release behavior of EC-g-PPEGMA amphiphilic copolymers. Carbohydr Polym 81:213–218. doi:10.1016/j.carbpol.2010.02.017

    Article  CAS  Google Scholar 

  18. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100. doi:10.1016/j.eurpolymj.2009.04.033

    Article  CAS  Google Scholar 

  19. Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Ind Eng Chem Res 50:7833–7840. doi:10.1021/ie200516k

    Article  CAS  Google Scholar 

  20. Babu VR, Kanth VR, Mukund JM, Aminabhavi TM (2010) Novel methyl cellulose-grafted-acrylamide/gelatin microspheres for controlled release of nifedipine. J Appl Polym Sci 115:3542–3549. doi:10.1002/app.30480

    Article  CAS  Google Scholar 

  21. Al-Kahtani AA, Sherigara BS (2014) Controlled release of diclofenac sodium through acrylamide grafted hydroxyethyl cellulose and sodium alginate. Carbohydr Polym 104:151–157. doi:10.1016/j.carbpol.2014.01.018

    Article  CAS  PubMed  Google Scholar 

  22. Wang B, Chen K, Yang R, Yang F, Liu J (2014) Stimulus-responsive polymeric micelles for the light-triggered release of drugs. Carbohydr Polym 103:510–519. doi:10.1016/j.carbpol.2013.12.062

    Article  CAS  PubMed  Google Scholar 

  23. Moghaddam PN, Avval ME, Fareghi AR (2014) Modification of cellulose by graft polymerization for use in drug delivery systems. Colloid Polym Sci 292:77–84

    Article  CAS  Google Scholar 

  24. Salama A, El-Sakhawy M, Kamel S (2016) polymer. Int J Biol Macromol 93:1647–1652. doi:10.1016/j.ijbiomac.2016.04.029

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Guo Y, Sun R, Wang X (2016) Self-assembly and β-carotene loading capacity of hydroxyethyl cellulose-graft-linoleic acid nanomicelles. Carbohydr Polym 145:56–63

    Article  CAS  PubMed  Google Scholar 

  26. Das R, Pal S (2013) Hydroxypropyl methyl cellulose grafted with polyacrylamide: application in controlled release of 5-amino salicylic acid. Colloids Surf B Biointerfaces 110:236–241. doi:10.1016/j.colsurfb.2013.04.033

    Article  CAS  PubMed  Google Scholar 

  27. Singh DJ, Jain RR, Soni PS, Abdul S, Darshana H, Gaikwad RV, Menon MD (2015) Preparation and evaluation of surface modified lactose particles for improved performance of fluticasone propionate dry powder inhaler. J Aerosol Med Pulm Drug Deliv 28:254–267. doi:10.1089/jamp.2014.1146

    Article  CAS  PubMed  Google Scholar 

  28. Muñoz-García RO, Hernández ME, Ortiz GG, Fernández VV, Arellano MR, Sánchez-Díaz JC (2015) A novel polyacrylamide-based hydrogel crosslinked with cellulose acetate and prepared by precipitation polymerization. Quim Nova 38:1031–1036

    Google Scholar 

  29. Young PM, Wood O, Ooi J, Traini D (2011) The influence of drug loading on formulation structure and aerosol performance in carrier based dry powder inhalers. Int J Pharm 416:129–135. doi:10.1016/j.ijpharm.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  30. Hu J, Li HY, Williams GR, Yang HH, Tao L, Zhu LM (2016) Electrospun poly(N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci 105:1104–1112. doi:10.1016/S0022-3549(15)00191-4

    Article  CAS  PubMed  Google Scholar 

  31. Lin X, Tang D, Cui W, Cheng Y (2012) Controllable drug release of electrospun thermoresponsive poly(N-isopropylacrylamide)/poly(2-acrylamido-2-methylpropanesulfonic acid) nanofibers. J Biomed Mater Res Part A 100A:1839–1845. doi:10.1002/jbm.a.34142

    Article  CAS  Google Scholar 

  32. Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344. doi:10.1039/c0jm01219j

    Article  CAS  Google Scholar 

  33. Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545. doi:10.1007/s10570-013-9973-8

    Article  CAS  Google Scholar 

  34. Chiappone A, Nair J, Gerbaldi C, Zeno E, Bongiovanni R (2014) Flexible and high performing polymer electrolytes obtained by UV-induced polymer–cellulose grafting. RSC Adv 4:40873–40881. doi:10.1039/C4RA07299E

    Article  CAS  Google Scholar 

  35. Chiappone A, Nair JR, Gerbaldi C, Zeno E, Bongiovanni R (2014) Cellulose/acrylate membranes for flexible lithium batteries electrolytes: balancing improved interfacial integrity and ionic conductivity. Eur Polym J 57:22–29. doi:10.1016/j.eurpolymj.2014.05.004

    Article  CAS  Google Scholar 

  36. Chelmecki M, Meyer WH, Wegner G (2007) Effect of crosslinking on polymer electrolytes based on cellulose. J Appl Polym Sci 105:25–29

    Article  CAS  Google Scholar 

  37. Paracha RN, Ray S, Easteal AJ (2012) Grafting of LiAMPS on ethyl cellulose: a route to the fabrication of superior quality polyelectrolyte gels for rechargeable lithium ion batteries. J Mater Sci 47:3698–3705

    Article  CAS  Google Scholar 

  38. Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roué L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549. doi:10.1016/j.jpowsour.2015.01.140

    Article  CAS  Google Scholar 

  39. Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chemie Int Ed 51:8762–8767. doi:10.1002/anie.201201568

    Article  CAS  Google Scholar 

  40. Ryou MH, Kim J, Lee I, Kim S, Jeong YK, Hong S, Ryu JH, Kim TS, Park JK, Lee H, Choi JW (2013) Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv Mater 25:1571–1576. doi:10.1002/adma.201203981

    Article  CAS  PubMed  Google Scholar 

  41. Wei L, Chen C, Hou Z, Wei H (2016) Poly(acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci Rep 6:19583. doi:10.1038/srep19583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462. doi:10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  43. Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164:351–364. doi:10.1016/j.jpowsour.2006.10.065

    Article  CAS  Google Scholar 

  44. Kim M, Han GY, Yoon KJ, Park JH (2010) Preparation of a trilayer separator and its application to lithium-ion batteries. J Power Sources 195:8302–8305. doi:10.1016/j.jpowsour.2010.07.016

    Article  CAS  Google Scholar 

  45. Choi J-A, Kim SH, Kim D-W (2010) Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators. J Power Sources 195:6192–6196. doi:10.1016/j.jpowsour.2009.11.020

    Article  CAS  Google Scholar 

  46. Zaccaria M, Gualandi C, Fabiani D, Focarete ML, Croce F (2012) Effect of oxide nanoparticles on thermal and mechanical properties of electrospun separators for lithium-ion batteries. J Nanomater. doi:10.1155/2012/216012

    Article  Google Scholar 

  47. Hsu C-H, Chien L-H, Kuo P-L (2016) High thermal and electrochemical stability of a SiO2 nanoparticle hybird-polyether cross-linked membrane for safety reinforced lithium-ion batteries. RSC Adv 6:18089–18095. doi:10.1039/C5RA26694G

    Article  CAS  Google Scholar 

  48. Choudhury S, Mangal R, Agrawal A, Archer LA (2015) A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat Commun 6:10101. doi:10.1038/ncomms10101

    Article  CAS  PubMed  Google Scholar 

  49. Jeong HS, Lee SY (2011) Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J Power Sources 196:6716–6722. doi:10.1016/j.jpowsour.2010.11.037

    Article  CAS  Google Scholar 

  50. Zhang J, Liu Z, Kong Q, Zhang C, Pang S, Yue L, Wang X, Yao J, Cui G (2013) Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator. ACS Appl Mater Interfaces 5:128–134. doi:10.1021/am302290n

    Article  CAS  PubMed  Google Scholar 

  51. Xu Q, Kong Q, Liu Z, Wang X, Liu R, Zhang J, Yue L, Duan Y, Cui G (2014) Cellulose/polysulfonamide composite membrane as a high performance lithium-ion battery separator. ACS Sustain Chem Eng 2:194–199. doi:10.1021/sc400370h

    Article  CAS  Google Scholar 

  52. Zahrim AY, Tizaoui C, Hilal N (2011) Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: a review. Desalination 266:1–16. doi:10.1016/j.desal.2010.08.012

    Article  CAS  Google Scholar 

  53. Wojnárovits L, Földváry CM, Takács E (2010) Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: a review. Radiat Phys Chem 79:848–862. doi:10.1016/j.radphyschem.2010.02.006

    Article  CAS  Google Scholar 

  54. Kumar R, Kumar G, Umar A (2014) Zinc oxide nanomaterials for photocatalytic degradation of methyl orange: a review. Nanosci Nanotechnol Lett 6:631–650. doi:10.1166/nnl.2014.1879

    Article  CAS  Google Scholar 

  55. Roy A, Adhikari B, Majumder SB (2013) Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Ind Eng Chem Res 52:6502–6512

    Article  CAS  Google Scholar 

  56. Lee KE, Teng TT, Morad N, Poh BT, Mahalingam M (2011) Flocculation activity of novel ferric chloride-polyacrylamide (FeCl3-PAM) hybrid polymer. Desalination 266:108–113. doi:10.1016/j.desal.2010.08.009

    Article  CAS  Google Scholar 

  57. Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  CAS  Google Scholar 

  58. Cai T, Yang Z, Li H, Yang H, Li A, Cheng R (2013) Effect of hydrolysis degree of hydrolyzed polyacrylamide grafted carboxymethyl cellulose on dye removal efficiency. Cellulose 20:2605–2614

    Article  CAS  Google Scholar 

  59. Gupta VK, Agarwal S, Singh P, Pathania D (2013) Acrylic acid grafted cellulosic Luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr Polym 98:1214–1221. doi:10.1016/j.carbpol.2013.07.019

    Article  CAS  PubMed  Google Scholar 

  60. Gupta VK, Pathania D, Agarwal S, Sharma S (2014) Amputation of congo red dye from waste water using microwave induced grafted Luffa cylindrical cellulosic fiber. Carbohydr Polym 111:556–566. doi:10.1016/j.carbpol.2014.04.032

    Article  CAS  PubMed  Google Scholar 

  61. Kumari S, Mankotia D, Chauhan GS (2016) Crosslinked cellulose dialdehyde for Congo red removal from its aqueous solutions. J Environ Chem Eng 4:1126–1136. doi:10.1016/j.jece.2016.01.008

    Article  CAS  Google Scholar 

  62. Liu L, Gao ZY, Su XP, Chen X, Jiang L, Yao JM (2015) Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain Chem Eng 3:432–442

    Article  CAS  Google Scholar 

  63. Mahdavinia GR, Bazmizeynabad F (2014) Synthesis of anti-salt hydroxypropyl methylcellulose-polyacrylamide/laponite RD nanocomposite hydrogel and its application to remove cationic dye. Polym Plast Technol Eng 53:411–422

    Article  CAS  Google Scholar 

  64. Oladipo AA, Gazi M, Saber-Samandari S (2014) Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: equilibrium isotherms, kinetic studies and optimization. J Taiwan Inst Chem Eng 45:653–664. doi:10.1016/j.jtice.2013.07.013

    Article  CAS  Google Scholar 

  65. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. doi:10.1016/j.ijbiomac.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  66. Tian Y, Ju B, Zhang S, Hou L (2016) Thermoresponsive cellulose ether and its flocculation behavior for organic dye removal. Carbohydr Polym 136:1209–1217. doi:10.1016/j.carbpol.2015.10.031

    Article  CAS  PubMed  Google Scholar 

  67. Lin Q, Gao M, Chang J, Ma H (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes. Carbohydr Polym 151:283–294

    Article  CAS  PubMed  Google Scholar 

  68. Zhou Y, Zhang M, Hu X, Wang X, Niu J, Ma T (2013) Adsorption of cationic dyes on a cellulose-based multicarboxyl adsorbent. J Chem Eng Data 58:413–421

    Article  CAS  Google Scholar 

  69. Mahmoodi NM, Hayati B, Arami M (2012) Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Ind Crops Prod 35:295–301. doi:10.1016/j.indcrop.2011.07.015

    Article  CAS  Google Scholar 

  70. Zhou Y, Zhang M, Wang X, Huang Q, Min Y, Ma T, Niu J (2014) Removal of crystal violet by a novel cellulose-based adsorbent: comparison with native cellulose. Ind Eng Chem Res 53:5498–5506. doi:10.1021/ie404135y

    Article  CAS  Google Scholar 

  71. Ozacar M, Sengil IA (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96:791–795. doi:10.1016/j.biortech.2004.07.011

    Article  PubMed  CAS  Google Scholar 

  72. Nandi BK, Goswami A, Das AK, Mondal B, Purkait MK (2008) Kinetic and equilibrium studies on the adsorption of crystal violet dye using kaolin as an adsorbent. Sep Sci Technol 43:1382–1403

    Article  CAS  Google Scholar 

  73. Nordberg G, Fowler B, Nordberg M, Friberg L (2007) Handbook on the toxicology of metals. Academic, San Diego. doi:10.1017/CBO9781107415324.004

    Book  Google Scholar 

  74. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724. doi:10.1016/j.biortech.2008.01.036

    Article  PubMed  CAS  Google Scholar 

  75. Mudhoo A, Garg VK, Wang S (2012) Removal of heavy metals by biosorption. Environ Chem Lett 10:109–117. doi:10.1007/s10311-011-0342-2

    Article  CAS  Google Scholar 

  76. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173. doi:10.1016/j.watres.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  77. Yousif AM, Labib SA (2016) Fabrication of new cellulose-based sorbents for fast and efficient removal of hazardous Al(III) ions from their aqueous solutions. J Dispers Sci Technol 37:565–574

    Article  CAS  Google Scholar 

  78. Abdel-Halim ES (2012) Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer. Carbohydr Polym 90:930–936. doi:10.1016/j.carbpol.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  79. Wichaita W, Samart C, Yoosuk B, Kongparakul S (2015) Cellulose graft poly(acrylic acid) and polyacrylamide: grafting efficiency and heavy metal adsorption performance. Macromol Symp 354:84–90

    Article  CAS  Google Scholar 

  80. Rahman ML, Sarkar SM, Yusoff MM, Abdullah MH (2016) Efficient removal of transition metal ions using poly(amidoxime) ligand from polymer grafted kenaf cellulose. RSC Adv 6:745–757

    Article  CAS  Google Scholar 

  81. Anirudhan TS, Nima J, Divya PL (2015) Adsorption and separation behavior of uranium(VI) by 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted polymer. J Environ Chem Eng 3:1267–1276. doi:10.1016/j.jece.2014.10.006

    Article  CAS  Google Scholar 

  82. Zhu L, Zhang L, Tang Y, Ma D, Yang J (2015) Synthesis of kaolin/sodium alginate-grafted poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid) hydrogel composite and its sorption of lead, cadmium, and zinc ions. J Elastomers Plast 47:488–501

    Article  CAS  Google Scholar 

  83. Singha AS, Guleria A (2015) Synthesis and applications of functional polymers from natural okra fibers for removal of Cu(II) Ions from aqueous solution. J Nat Fibers 12:587–603. doi:10.1080/15440478.2014.984049

    Article  CAS  Google Scholar 

  84. Abdel-Halim ES, Al-Deyab SS (2012) Chemically modified cellulosic adsorbent for divalent cations removal from aqueous solutions. Carbohydr Polym 87:1863–1868. doi:10.1016/j.carbpol.2011.10.028

    Article  CAS  Google Scholar 

  85. Tian Y, Wu M, Liu R, Wang D, Lin X, Liu W, Ma L, Li Y, Huang Y (2011) Modified native cellulose fibers—a novel efficient adsorbent for both fluoride and arsenic. J Hazard Mater 185:93–100. doi:10.1016/j.jhazmat.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  86. Marsh K, Bugusu B (2007) Food packaging? Roles, materials, and environmental issues. J Food Sci 72:R39–R55. doi:10.1111/j.1750-3841.2007.00301.x

    Article  CAS  PubMed  Google Scholar 

  87. Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237. doi:10.1080/10408690490464276

    Article  CAS  PubMed  Google Scholar 

  88. Zhang D, Xiao H (2013) Dual-functional beeswaxes on enhancing antimicrobial activity and water vapor barrier property of paper. ACS Appl Mater Interfaces 5:3464–3468. doi:10.1021/am400585m

    Article  CAS  PubMed  Google Scholar 

  89. Qian L, Guan Y, He B, Xiao H (2008) Modified guanidine polymers: synthesis and antimicrobial mechanism revealed by AFM. Polymer (Guildf) 49:2471–2475. doi:10.1016/j.polymer.2008.03.042

    Article  CAS  Google Scholar 

  90. Andresen M, Stenius P (2007) Water in oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28:837–844. doi:10.1080/01932690701341827

    Article  CAS  Google Scholar 

  91. Missoum K, Sadocco P, Causio J, Belgacem MN, Bras J (2014) Antibacterial activity and biodegradability assessment of chemically grafted nanofibrillated cellulose. Mater Sci Eng C Mater Biol Appl 45:477–483. doi:10.1016/j.msec.2014.09.037

    Article  CAS  PubMed  Google Scholar 

  92. Fernandes SCM, Sadocco P, Alonso-Varona A, Palomares T, Eceiza A, Silvestre AJD, Mondragon I, Freire CSR (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297. doi:10.1021/am400338n

    Article  CAS  PubMed  Google Scholar 

  93. Missoum K, Bras J, Belgacem MN (2012) Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose 19:1957–1973. doi:10.1007/s10570-012-9780-7

    Article  CAS  Google Scholar 

  94. Wilson AE, Bergaentzlé M, Bindler F, Marchioni E, Lintz A, Ennahar S (2013) In vitro efficacies of various isothiocyanates from cruciferous vegetables as antimicrobial agents against foodborne pathogens and spoilage bacteria. Food Control 30:318–324. doi:10.1016/j.foodcont.2012.07.031

    Article  CAS  Google Scholar 

  95. Saini S, Belgacem MN, Missoum K, Bras J (2015) Natural active molecule chemical grafting on the surface of microfibrillated cellulose for fabrication of contact active antimicrobial surfaces. Ind Crops Prod 78:82–90. doi:10.1016/j.indcrop.2015.10.022

    Article  CAS  Google Scholar 

  96. Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B Biointerfaces 69:164–168. doi:10.1016/j.colsurfb.2008.11.004

    Article  CAS  PubMed  Google Scholar 

  97. Vuoti S, Laatikainen E, Heikkinen H, Johansson LS, Saharinen E, Retulainen E (2013) Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydr Polym 96:549–559. doi:10.1016/j.carbpol.2012.07.053

    Article  CAS  PubMed  Google Scholar 

  98. Wu Y, Luo X, Li W, Song R, Li J, Li Y, Li B, Liu S (2016) Green and biodegradable composite films with novel antimicrobial performance based on cellulose. Food Chem 197:250–256. doi:10.1016/j.foodchem.2015.10.127

    Article  CAS  PubMed  Google Scholar 

  99. Elegir G, Kindl A, Sadocco P, Orlandi M (2008) Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzyme Microb Technol 43:84–92. doi:10.1016/j.enzmictec.2007.10.003

    Article  CAS  Google Scholar 

  100. Lee SY, Lee SJ, Choi DS, Hur SJ (2015) Current topics in active and intelligent food packaging for preservation of fresh foods. J Sci Food Agric 95:2799–2810. doi:10.1002/jsfa.7218

    Article  CAS  PubMed  Google Scholar 

  101. Dong C, Ye Y, Qian L, Zhao G, He B, Xiao H (2014) Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21:1921–1932. doi:10.1007/s10570-014-0249-8

    Article  CAS  Google Scholar 

  102. Lavoine N, Givord C, Tabary N, Desloges I, Martel B, Bras J (2014) Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innov Food Sci Emerg Technol 26:330–340. doi:10.1016/j.ifset.2014.06.006

    Article  CAS  Google Scholar 

  103. Barbiroli A, Bonomi F, Capretti G, Iametti S, Manzoni M, Piergiovanni L, Rollini M (2012) Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 26:387–392. doi:10.1016/j.foodcont.2012.01.046

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajesh Kumar or Rajeev Kr. Sharma.

Ethics declarations

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Sharma, R.K. & Singh, A.P. Grafted cellulose: a bio-based polymer for durable applications. Polym. Bull. 75, 2213–2242 (2018). https://doi.org/10.1007/s00289-017-2136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2136-6

Keywords

Navigation