Skip to main content

Advertisement

Log in

Removal of heavy metals by biosorption

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Industrialization and urbanization have resulted in increased releases of toxic heavy metals into the natural environment comprising soils, lakes, rivers, groundwaters and oceans. Research on biosorption of heavy metals has led to the identification of a number of microbial biomass types that are extremely effective in bioconcentrating metals. Biosorption is the binding and concentration of adsorbate from aqueous solutions by certain types of inactive and dead microbial biomass. The novel types of biosorbents presently reviewed are grouped under fungal biomass, biomass of non-living, dried brown marine algae, agricultural wastes and residues, composite chitosan biosorbent prepared by coating chitosan, cellulose-based sorbents and bacterial strains. The reports discussed in this review collectively suggest the promise of biosorption as a novel and green bioremediation technique for heavy metal pollutants from contaminated natural waters and wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acar FN, Malkoc E (2004) The removal of chromium(VI) from aqueous solutions by Fagus orientalis L. Bioresour Technol 94:3–15. doi:10.1016/j.biortech.2003.10.032

    Article  Google Scholar 

  • Akar T, Kaynak Z, Ulusoy S, Yuvaci D, Ozsari G, Akar ST (2009) Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode. J Hazard Mater 163:1134–1141. doi:10.1016/j.jhazmat.2008.07.084

    Article  CAS  Google Scholar 

  • Amini M, Younesi H, Bahramifar N (2009) Biosorption of nickel(II) from aqueous solution by Aspergillus niger: response surface methodology and isotherm study. Chemosphere 75:1483–1491. doi:10.1016/j.chemosphere.2009.02.025

    Article  CAS  Google Scholar 

  • Ansari AA (2008) Effect of vermicompost on the productivity of potato (Solanum tuberosum), Spinach (Spinacia oleracea) and Turnip (Brassica campestris). World J Agric Sci 4:333–336

    Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (1988) Toxicological profile for nickel, ATSDR/U.S. Public Health Service, ATSDR/TP–88/19

  • Basci N, Kocadagistan E, Kocadagistan B (2004) Biosorption of copper (II) from aqueous solutions by wheat shell. Desalination 164:135–140. doi:10.1016/S0011-9164(04)00172-9

    Article  CAS  Google Scholar 

  • Benítez E, Nogales R, Masciandaro G, Ceccanti B (2000) Isolation by isoelectric focusing of humic–urease complexes from earthworm (Eisenia fetida)-processed sewage sludges. Biol Fertil Soils 31:489–493. doi:10.1007/s003740000197

    Article  Google Scholar 

  • Carrasquero Durán A, Flores I, Perozo C, Pernalete Z (2006) Immobilization of lead by a vermicompost and its effect on white bean (Vigna Sinensis var. Apure) uptake. Int J Environ Sci Technol 3:203–212

    Google Scholar 

  • Carrasquero-Durán A, Flores I (2009) Evaluation of lead(II) immobilization by a vermicompost using adsorption isotherms and IR spectroscopy. Bioresour Technol 100:1691–1694. doi:10.1016/j.biortech.2008.09.013

    Google Scholar 

  • Chen G, Zeng G, Tu X, Huang G, Chen Y (2005) A novel biosorbent: characterization of the spent mushroom compost and its application for removal of heavy metals. J Environ Sci (China) 17:756–760

    CAS  Google Scholar 

  • Cheremisinoff PN (1995) Handbook of water and wastewater treatment technology. Marcel Dekker Inc., New York

    Google Scholar 

  • Davis TA, Volesky B, Vieira RHSF (2000) Sargassum seaweed as biosorbent for heavy metals. Water Res 34:4270–4278. doi:10.1016/S0043-1354(00)00177-9

    Article  CAS  Google Scholar 

  • Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330. doi:10.1016/S0043-1354(03)00293-8

    Article  CAS  Google Scholar 

  • Demirbas E, Kobya M, Senturk E, Ozkan T (2004) Adsorption kinetics for the removal of chromium(VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA 30:533–539

    Article  CAS  Google Scholar 

  • Drasch GA (1993) Increase of cadmium body burden for this century. Sci Total Environ 67:75–89. doi:10.1016/0048-9697(83)90105-5

    Google Scholar 

  • EPA (Environmental Protection Agency) (1990) Environmental pollution control alternatives. EPA/625/5–90/025, EPA/625/4–89/023, Cincinnati, US

  • Fernando A, Monteiro S, Pinto F, Mendes B (2009) Production of biosorbents from waste olive cake and its adsorption characteristics for Zn2+ ion. Sustainability 1:277–297

    Article  CAS  Google Scholar 

  • Gajalakshmi S, Abbasi SA (2008) Solid waste management by composting: state of the art. Crit Rev Environ Sci Technol 38:311–400. doi:10.1080/10643380701413633

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Tang L, Salvador JM (1996) Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances. J Hazard Mater 48:191–206. doi:10.1016/0304-3894(95)00156-5

    Google Scholar 

  • Garg P, Gupta A, Satya S (2006) Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour Technol 97:391–395. doi:10.1016/j.biortech.2005.03.009

    Article  CAS  Google Scholar 

  • Hu MJ, Wei YL, Yang YW, Lee JF (2003) Immobilization of chromium(VI) with debris of aquatic plants. Bull Environ Contam Toxicol 71:840–847. doi:10.1007/s00128-003-0212-0

    Article  CAS  Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytoremediation: the application of vermicompost to remove zinc, cadmium, copper, nickel and lead by sunflower plant. Environ Eng Manag J 7:547–558

    CAS  Google Scholar 

  • Jordão CP, Pereira MG, Einloft R, Santana MB, Bellato CR, de Mello JWV (2002) Removal of Cu, Cr, Ni, and Zn from electroplating wastes and synthetic solutions by vermicompost of cattle manure. J Environ Sci Health A37:875–892

    Article  Google Scholar 

  • Jordão CP, Braganç R, Fernandes A, de Lima Ribeiro K, de Souza Nascimento B, Martins de Barros P (2009) Zn(II) adsorption from synthetic solution and kaolin wastewater onto vermicompost. J Hazard Mater 162:804–811. doi:10.1016/j.jhazmat.2008.05.104

    Article  Google Scholar 

  • Kocasoy G, Güvener Z (2009) Efficiency of compost in the removal of heavy metals from the industrial wastewater. Environ Geol 57:291–296. doi:10.1007/s00254-008-1372-3

    Article  CAS  Google Scholar 

  • Krishnan KA, Anirudhan TS (2003) Removal of cadmium(II) from aqueous solutions by steam activated sulphurised carbon prepared from sugar-cane bagasse pith: kinetics and equilibrium studies. Water SA 29:147–156

    Article  CAS  Google Scholar 

  • Lichtfouse E, Schwarzbauer J, Robert D (eds) (2012a) Environmental chemistry for a sustainable world. Nanotechnology and health risk, vol 1. Springer, p 410. doi:10.1007/978-94-007-2442-6

  • Lichtfouse E, Schwarzbauer J, Robert D (eds) (2012b) Environmental chemistry for a sustainable world. Remediation of air and water pollution, vol 2. Springer, p 541. doi:10.1007/978-94-007-2439-6

  • Lin X, Burns RC, Lawrance GA (2003) Effect of Cd(II) and anion type on the ageing of ferrihydrite and its subsequent leaching under neutral and alkaline conditions. Water Air Soil Pollut 143:155–177

    Article  CAS  Google Scholar 

  • Lo W, Chua LWH, Lam KH, Bi SP (1999) A comparative investigation on the adsorption of lead (II) by filamentous fungal biomass. Chemosphere 39:2723–2736. doi:10.1016/S0045-6535(99)00206-4

    Article  CAS  Google Scholar 

  • Long X, Luo X, Wang Y, Li Z (2009) Sorption of Pb(II) from aqueous solution by konjac glucomannan beads. Sci China E Technol Sci 52:223–226

    Article  CAS  Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium(VI) biosorption by Aeromonas caviae. Colloids Surf A Physicochem Eng Asp 242:93–104. doi:10.1016/j.colsurfa.2004.03.030

    Article  CAS  Google Scholar 

  • Oke IA, Olarinoye NO, Adewusi SRA (2008) Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell. Adsorption 14:73–83. doi:10.1007/s10450-007-9047-z

    Article  CAS  Google Scholar 

  • Özer A, Gürbüz G, Çalimli A, Körbahti BK (2008) Investigation of nickel(II) biosorption on Enteromorpha prolifera: optimization using response surface analysis. J Hazard Mater 152:778–788. doi:10.1016/j.jhazmat.2007.07.088

    Article  Google Scholar 

  • Peng K, Li X, Luo C, Shen Z (2006) Vegetation composition and heavy metal uptake by wild plants at three contaminated sites in Xiangxi area, China. J Environ Sci Health A 40:65–76

    Article  Google Scholar 

  • Pereira MG, Arruda MAZ (2003) Vermicompost as a natural adsorbent material: characterization and potentialities for cadmium adsorption. J Braz Chem Soc 14:39–47

    Article  CAS  Google Scholar 

  • Rahmani K, Mahvi AH, Vaezi F, Mesdaghinia AR, Nabizade R, Nazmara Sh (2009) Bioremoval of lead by use of waste activated sludge. Int J Environ Res 3:471–476

    CAS  Google Scholar 

  • Ravikumar TN, Yeledhalli NA, Ravi MV, Narayana Rao K (2008) Physical, physico-chemcial and enzymes activities of vermiash compost. Karnataka J Agric Sci 21:222–226

    Google Scholar 

  • Singh R, Sharma RR, Kumar S, Gupta RK, Patil RT (2008) Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresour Technol 99:8507–8511. doi:10.1016/j.biortech.2008.03.034

    Article  CAS  Google Scholar 

  • Singh RS, Singh VK, Tiwari PN, Singh JK, Sharma YC (2009) Biosorption studies of nickel on Parthenium hysterophorous ash. Environ Technol 30:355–364. doi:10.1080/09593330902753156

    Google Scholar 

  • Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D (2003) Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Pollut 142:357–373. doi:10.1023/A:1022084721990

    Google Scholar 

  • Urdaneta C, Parra LMC, Matute S, Garaboto MA, Barros H, Vázquez C (2008) Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence. Spectrochim Acta B 63:1455–1460. doi:10.1016/j.sab.2008.10.004

  • Vijayaraghavan K, Yun Y-S (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291. doi:10.1016/j.biotechadv.2008.02.002

    Google Scholar 

  • Volesky B (2001) Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy 59:203–216. doi:10.1016/S0304-386X(00)00160-2

    Article  CAS  Google Scholar 

  • Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108. doi:10.1016/j.watres.2007.02.037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ackmez Mudhoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mudhoo, A., Garg, V.K. & Wang, S. Removal of heavy metals by biosorption. Environ Chem Lett 10, 109–117 (2012). https://doi.org/10.1007/s10311-011-0342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0342-2

Keywords

Navigation