Skip to main content
Log in

Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = −20.8 kJ/mol), enthalpy change (ΔH = −3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acemioglu B (2004) Adsorption of congo red from aqueous solution onto calcium-rich fly ash. J Colloid Interface Sci 274:371–379

    Article  CAS  Google Scholar 

  • Akhlaghi SP, Berry RC, Tam KC (2013) Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications. Cellulose 20:1747–1764

    Article  CAS  Google Scholar 

  • Azzam F, Heux L, Putaux J, Jean B (2010) Preparation by grafting onto, characterization, and properties of thermally responsive polymer-decorated cellulose nanocrystals. Biomacromolecules 11:3652–3659

    Article  CAS  Google Scholar 

  • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules 13:1486–1494

    Article  CAS  Google Scholar 

  • Bhatnagar A, Jain AK (2005) A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J Colloid Interface Sci 281:49–55

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2008) Characterization and electromechanical performance of cellulose–chitosan blend electro-active paper. Smart Mater Struct 17:1–8

    Article  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97

  • de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules 11:473–480

    Article  Google Scholar 

  • Deng H, Yang L, Tao G, Dai J (2009) Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution. J Hazard Mater 166:1514–1521

    Article  CAS  Google Scholar 

  • Dogan M, Abak H, Alkan M (2008) Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water Air Soil Pollut 192:141–153

    Article  CAS  Google Scholar 

  • Doğan M, Alkan M, Türkyilmaz A, Özdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109:141–148

    Article  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of Ionic strength on the phase separation of suspensions of cellulose crystallites. Langmuir 12:2076–2082

    Google Scholar 

  • Gu J, Catchmark JM, Kaiser EQ, Archibald DD (2013) Quantification of cellulose nanowhiskers sulfate esterification levels. Carbohydr Polym 92:1809–1816

    Article  CAS  Google Scholar 

  • Gulnaz O, Kaya A, Matyar F, Arikan B (2004) Sorption of basic dyes from aqueous solution by activated sludge. J Hazard Mater 108:183–188

    Article  CAS  Google Scholar 

  • Gupta VK, Srivastava SK, Tyagi R (2000) Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertilizer waste material). Water Res 34:1543–1550

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Saini VK, Gerven TV, Bruggen BVd, Vecasteele C (2005) Removal of dyes from wastewater using bottom ash. Ind Eng Chem Res 44:3655–3664

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Mathur M, Sikarwar S (2007) Photochemical degradation of the hazardous dye safranin-T using TiO2 catalyst. J Colloid Interface Sci 309:464–469

    Article  CAS  Google Scholar 

  • Gupta VK, Mittal A, Malviya A, Mittal J (2009) Adsorption of carmoisine a from wastewater using waste materials-bottom ash and deoiled soya. J Colloid Interface Sci 335:24–33

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J Colloid Interface Sci 342:533–539

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Singh P, Pathania D (2013a) Acrylic acid grafted cellulosic luffa cylindrical fiber for the removal of dye and metal ions. Carbohydr Polym 98:1214–1221

    Article  CAS  Google Scholar 

  • Gupta VK, Pathania D, Singh P, Rathore BS, Chauhan P (2013b) Cellulose acetate–zirconium (IV) phosphate nano-composite with enhanced photo-catalytic activity. Carbohydr Polym 95:434–440

    Article  CAS  Google Scholar 

  • Gupta VK, Pathania D, Singh P, Kumar A, Rathore BS (2014) Adsorptional removal of methylene blue by guar gum-cerium (IV) tungstate hybrid cationic exchanger. Carbohydr Polym 101:684–691

    Article  CAS  Google Scholar 

  • Gürses A, Karaca S, Doğar Ç, Bayrak R, Açıkyıldız M, Yalçın M (2004) Determination of adsorptive properties of clay/water system: methylene blue sorption. J Colloid Interface Sci 269:310–314

    Article  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687

    Article  CAS  Google Scholar 

  • Hai FI, Yamamoto K, Fukushi K (2007) Hybrid treatment systems for dye wastewater. Crit Rev Environ Sci Technol 37:315–377

    Article  CAS  Google Scholar 

  • Hamdaoui O (2006) Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. J Hazard Mater 135:264–273

    Article  CAS  Google Scholar 

  • He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (2003) Sorption of dyes and copper ions onto biosorbents. Process Biochem 38:1047–1061

    Article  CAS  Google Scholar 

  • Hunger K (2003) Industrial dyes: chemistry, properties, applications. Wiley, Weinheim

    Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  Google Scholar 

  • Jain AK, Gupta VK, Bhatnagar A, Suhas (2003) Utilization of industrial waste products as adsorbents for the removal of dyes. J Hazard Mater 101:31–42

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Korzoun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP (1978) World water balance and water resources of the earth. UNESCO Press, Paris

    Google Scholar 

  • Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Adsorptive removal of malachite green dye from aqueous solution by bagasse fly ash and activated carbon-kinetic study and equilibrium isotherm analyses. Colloids and surfaces. A Physiochem Eng Asp 264:17–28

    Article  CAS  Google Scholar 

  • Marungrueng K, Pavasant P (2007) High performance biosorbent (Caulerpa lentillifera) for basic dye removal. Bioresour Technol 98:1567–1572

    Article  CAS  Google Scholar 

  • Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521

    Article  CAS  Google Scholar 

  • Métivier-Pignon H, Faur-Brasquet C, Le Cloirec P (2003) Adsorption of dyes onto activated carbon cloths: approach of adsorption mechanisms and coupling of ACC with ultrafiltration to treat coloured wastewaters. Sep Purif Technol 31:3–11

    Article  Google Scholar 

  • Mittal A, Gupta VK, Malviya A, Mittal J (2008) Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (bottom ash and de-oiled soya). J Hazard Mater 151:821–832

    Article  CAS  Google Scholar 

  • Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interface Sci 343:463–473

    Article  CAS  Google Scholar 

  • Ozacar M, Sengil IA (2005) Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresour Technol 96:791–795

    Article  Google Scholar 

  • Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89:1191–1206

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  • Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238

    Article  CAS  Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Saha P, Chowdhury S, Gupta S, Kumar I, Kumar R (2010) Assessment on the removal of malachite green using tamarind fruit shell as biosorbent. Clean-Soil Air Water 38:437–445

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Sharma P, Kaur H, Sharma M, Sahore V (2011) A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environ Monit Assess 183:151–195

    Article  CAS  Google Scholar 

  • Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2011) Alkali treatment of cellulose II fibres and effect on dye sorption. Carbohydr Polym 84:299–307

    Article  Google Scholar 

  • Sivasamy A, Sundarabal N (2011) Biosorption of an azo dye by Aspergillus niger and Trichoderma sp. Fungal Biomasses. Curr Microbiol 62:351–357

    Article  CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Dawodu FA (2008) Equilibrium, kinetic and sorber design studies on the adsorption of aniline blue dye by sodium tetraborate-modified kaolinite clay adsorbent. J Hazard Mater 157:397–409

    Article  CAS  Google Scholar 

  • Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39:129–138

    Article  CAS  Google Scholar 

  • Wang S, Li H, Xu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295:71–78

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung WH, McKay G (2003) Equilibrium studies for acid dye adsorption onto chitosan. Langmuir 19:7888–7894

    Article  CAS  Google Scholar 

  • Wong Y, Szeto Y, Cheung W, McKay G (2004) Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochem 39:695–704

    Article  Google Scholar 

Download references

Acknowledgments

Rasim Batmaz (RB) thanks the Ministry of National Education of the Republic of Turkey for supporting his research at University of Waterloo, Canada. RB wishes to acknowledge Parinaz Akhlaghi for several helpful discussion on this subject. The authors would also like to acknowledge FP Innovations and CelluForce for the supply of CNC for this research. This work is also supported by NSERC, CFI Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam C. Tam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batmaz, R., Mohammed, N., Zaman, M. et al. Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21, 1655–1665 (2014). https://doi.org/10.1007/s10570-014-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0168-8

Keywords

Navigation