Skip to main content
Log in

Modification of cellulose by graft polymerization for use in drug delivery systems

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Cellulose-based biodegradable polymers—as microspheres or hydrogels—are suitable for drug delivery systems. In this work, cellulose microfibers were converted to cellulose esters for subsequent graft copolymerization either by free radical or atom transfer radical polymerization (ATRP). For the former, carboxymethyl cellulose (CMC) was prepared and then modified through grafting of poly(hydroxyethyl acrylate) or polyacrylamide. ATRP was achieved by chloroacetylation of cellulose followed by graft copolymerization of hydroxyethyl acrylate or acrylamide monomers. The degree of substitution for CMC and chloroacetylated cellulose (CAC) was determined by the method described in US Pharmacopeia NF24 and by titration method, respectively. CMC, CAC, and the grafted copolymers were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, X-ray diffraction, and atomic force microscopy; the latter technique clearly shows the chain growth of the synthetic polymers on the backbone surface. Furthermore, cephalexin antibiotic was loaded on the copolymers, and the resultant in vitro drug release studied in three different media (buffer solutions with pH equal to 3, 6.1, and 8).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198

    Article  CAS  Google Scholar 

  2. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    Article  CAS  Google Scholar 

  3. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Article  CAS  Google Scholar 

  4. Kroon-Batenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconj J14:677–690

    Article  Google Scholar 

  5. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  6. Saboktakin MR, Maharramov A, Ramazanov MA (2007) Synthesis and characterization of aromatic polyether dendrimer/mesalamine (5-ASA) nanocomposite as drug carrier system. JAm Sci 3:45

    Google Scholar 

  7. Chiefari J, Chong YK, Ercole F, Kristina J, Jeffery J, Le TPT (1998) Living free-radical polymerization by reversible addition–fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  8. Chong YK, Ercole F, Moad G, Rizzardo E, Thang SH, Anderson AG (1999) Imidazolidinone nitroxide-mediated polymerization. Macromolecules 32:6895–6903

    Article  CAS  Google Scholar 

  9. Mayadunne RTA, Rizzardo E, Chiefari J, Chong YK, Moad G, Thang SH (1999) Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 32:6977–6980

    Article  CAS  Google Scholar 

  10. Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process: a second update. Aust J Chem 62:1402–1472

    Article  CAS  Google Scholar 

  11. Stehling UM, Malmstrom EE, Waymouth RM, Hawker CJ (1998) Synthesis of poly (olefin) graft copolymers by a combination of metallocene and “living” free radical polymerization techniques. Macromolecules 31:4396–4398

    Article  CAS  Google Scholar 

  12. Benoit D, Chaplinski V, Braslau R, Hawker CJ (1999) Development of a universal alkoxyamine for “living” free radical polymerizations. J Am Chem Soc 121:3904–3920

    Article  CAS  Google Scholar 

  13. Chong YK, Le TPT, Moad G, Rizzardo E, Thang SH (1999) A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules 32:2071–2074

    Article  CAS  Google Scholar 

  14. Farcet C, Charleux B, Pirri R (2001) Poly(n-butyl acrylate) homopolymer and poly[n-butyl acrylate-b-(n-butyl acrylate-co-styrene)] block copolymer prepared via nitroxide-mediated living/controlled radical polymerization in mini emulsion. Macromolecules 34:3823–3826

    Article  CAS  Google Scholar 

  15. Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41:1133–1142

    Article  CAS  Google Scholar 

  16. Ansong OE, Jansen S, Wei Y, Pomrink G, Lu H, Patel A (2009) Accelerated controlled radical polymerization of methacrylates. Polym Int 58:54–65

    Article  CAS  Google Scholar 

  17. Chun-xiang L, Huai-yu Z, Ming-hua L, Shi-yu F, Jia-jun Z (2009) Preparation of cellulose graft poly(methyl methacrylate) copolymers by atom transfer radical polymerization in an ionic liquid. Carbohydr Polym 78:432–438

    Article  Google Scholar 

  18. Meng T, Gao X, Zhang J, Yuan J, Zhang Y, He J (2009) Graft copolymers prepared by atom transfer radical polymerization (ATRP) from cellulose. Polymer 50:447–454

    Article  CAS  Google Scholar 

  19. Munro NH, Hanton LR, Moratti SC, Robinson BH (2009) Synthesis and characterization of chitosan-graft-poly(OEGMA) copolymers prepared by ATRP. Carbohydr Polym 77:496–505

    Article  CAS  Google Scholar 

  20. Jonsson M, Nystrom D, Nordin O, Malmstrom E (2009) Surface modification of thermally expandable microspheres by grafting poly(glycidyl methacrylate) using ARGET ATRP. Eur Polym J 45:2374–2382

    Article  CAS  Google Scholar 

  21. Liu Y, Chen M, Hsu K (2009) Preparation of dendron-like polystyrenes from atom transfer radical polymerization (ATRP) and direct chain-end functionalization. React Funct Polym 69:424–428

    Article  CAS  Google Scholar 

  22. Khan MY, Xue Z, He D, Noh SK, Lyoo WS (2010) Comparative study of a variety of ATRP systems with high oxidation state metal catalyst system. Polymer 51:69–74

    Article  CAS  Google Scholar 

  23. Liou S, Rademacher JT, Malaba D, Pallack ME, Brittain WJ (2000) Atom transfer radical polymerization of methyl methacrylate with polyethylene-functionalized ligands. Macromolecules 33:4295–4296

    Article  CAS  Google Scholar 

  24. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. ChemRev 101:2921–2990

    CAS  Google Scholar 

  25. Singleton DA, Nowlan DT, Jahed N, Matyjaszewski K (2003) Isotope effects and the mechanism of atom transfer radical polymerization. Macromolecules 36:8609–8616

    Article  CAS  Google Scholar 

  26. Ding S, Radosz M, Shen Y (2005) Ionic liquid catalyst for biphasic atom transfer radical polymerization of methyl methacrylate. Macromolecules 38:5921–5928

    Article  CAS  Google Scholar 

  27. Braunecker WA, Matyjaszewski K (2006) Recent mechanistic developments in atom transfer radical polymerization. J Mol Catal A: Chemical 254:155–164

    Article  CAS  Google Scholar 

  28. Xu FJ, Neohb KG, Kang ET (2009) Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci 34:719–761

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial and spiritual supports from the University of Urmia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Najafi Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghaddam, P.N., Avval, M.E. & Fareghi, A.R. Modification of cellulose by graft polymerization for use in drug delivery systems. Colloid Polym Sci 292, 77–84 (2014). https://doi.org/10.1007/s00396-013-3042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-3042-6

Keywords

Navigation