Skip to main content
Log in

Characterization and locus-specific typing of MHC class I genes in the red-billed gull (Larus scopulinus) provides evidence for major, minor, and nonclassical loci

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

A major challenge facing studies of major histocompatibility complex (MHC) evolution in birds is the difficulty in genotyping alleles at individual loci, and the consequent inability to investigate sequence variation and selection pressures for each gene. In this study, four MHC class I loci were isolated from the red-billed gull (Larus scopulinus), representing both the first characterized MHCI genes within Charadriiformes (shorebirds, gulls, and allies) and the first full-length MHCI sequences described outside Galloanserae (gamebirds + waterfowl). Complete multilocus genotypes were obtained for 470 individuals using a combination of reference-strand conformation analysis and direct sequencing of gene-specific amplification products, and variation of peptide-binding region (PBR) exons was surveyed for all loci. Each gene is transcribed and has conserved sequence features characteristic of antigen-presenting MHCI molecules. However, higher allelic variation, a more even allele frequency distribution, and evidence of positive selection acting on a larger number of PBR residues suggest that only one locus (Lasc-UAA) functions as a major classical MHCI gene. Lasc-UBA, with more limited variation and PBR motifs that encompass a subset of Lasc-UAA diversity, was assigned a putative minor classical function, whereas the divergent and largely invariant binding-groove motifs of Lasc-UCA and -UDA are suggestive of nonclassical loci with specialized ligand-binding roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afanassieff M, Goto RM, Ha J, Sherman MA, Zhong LW, Auffray C, Coudert F, Zoorob R, Miller MM (2001) At least one class I gene in restriction fragment pattern-Y (Rfp-Y), the second MHC gene cluster in the chicken, is transcribed, polymorphic, and shows divergent specialization in antigen binding region. J Immunol 166:3324–3333

    PubMed  CAS  Google Scholar 

  • Alcaide M, Edwards SV, Cadahía L, Negro JJ (2009) MHC class I genes of birds of prey: isolation, polymorphism and diversifying selection. Conserv Genet 10:1349–1355

    Article  CAS  Google Scholar 

  • Allen RL, O’Callaghan CA, McMichael AJ, Bowness P (1999) HLA-B27 can form a novel β2-microglobulin-free heavy chain homodimer structure. J Immunol 162:5045–5048

    PubMed  CAS  Google Scholar 

  • Babik W (2010) Methods for MHC genotyping in non-model vertebrates. Mol Ecol Resour 10:237–251

    Article  CAS  Google Scholar 

  • Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. In: Barnes MR, Gray IC (eds) Bioinformatics for geneticists. Wiley, Chichester, pp 289–316

    Chapter  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518

    Article  PubMed  CAS  Google Scholar 

  • Dean AD, Greenwald JE (1995) Use of filtered pipet tips to elute DNA from agarose gels. Biotechniques 18:980

    PubMed  CAS  Google Scholar 

  • Edwards SV, Nusser J, Gasper J (2000) Characterization and evolution of major histocompatibility complex (MHC) genes in non-model organisms, with examples from birds. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Scientific, Cambridge, pp 168–207

    Google Scholar 

  • Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Garrigan D, Hedrick PW (2003) Detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57:1707–1722

    PubMed  CAS  Google Scholar 

  • Gillingham MAF, Richardson DS, Løvlie H, Moynihan A, Worley K, Pizzari T (2009) Cryptic preference for MHC-dissimilar females in male red junglefowl, Gallus gallus. Proc R Soc Lond B 276:1083–1092

    Article  CAS  Google Scholar 

  • Grossberger D, Parham P (1992) Reptilian class I major histocompatibility complex genes reveal conserved elements in class I structure. Immunogenetics 36:166–174

    Article  PubMed  CAS  Google Scholar 

  • Hála K, Chaussé AM, Bourlet Y, Lassila O, Hasler V, Auffray C (1988) Attempt to detect recombination between B-F and B-L genes within the chicken B complex by serological typing, in vitro MLR, and RFLP analyses. Immunogenetics 28:433–438

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp 41:95–98

    CAS  Google Scholar 

  • Hee CS, Gao S, Loll B, Miller MM, Uchanska-Ziegler B, Daumke O, Ziegler A (2010) Structure of a classical MHC class I molecule that binds “non-classical” ligands. PLoS Biol 8:e1000557

    Article  PubMed  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of the major histocompatibility complex in birds. BioScience 52:423–431

    Article  Google Scholar 

  • Hosomichi K, Miller MM, Goto RM, Wang Y, Suzuki S, Kulski JK, Nishibori M, Inoko H, Hanzawa K, Shiina T (2008) Contribution of mutation, recombination, and gene conversion to chicken Mhc-B haplotype diversity. J Immunol 181:3393–3399

    PubMed  CAS  Google Scholar 

  • Hughes AL, Friedman R (2008) Codon-based tests of positive selection, branch lengths, and the evolution of mammalian immune system genes. Immunogenetics 60:495–506

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6:559–579

    PubMed  CAS  Google Scholar 

  • Hunt HD, Fulton JE (1998) Analysis of polymorphisms in the major expressed class I locus (B-FIV) of the chicken. Immunogenetics 47:456–467

    Article  PubMed  CAS  Google Scholar 

  • Hunt HD, Pharr GT, Bacon LD (1994) Molecular analysis reveals MHC class I intra-locus recombination in the chicken. Immunogenetics 40:370–375

    Article  PubMed  CAS  Google Scholar 

  • Hunt HD, Goto RM, Foster DN, Bacon LD, Miller MM (2006) At least one YMHCI molecule in the chicken is alloimmunogenic and dynamically expressed on spleen cells during development. Immunogenetics 58:297–307

    Article  PubMed  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  PubMed  CAS  Google Scholar 

  • Innan H (2009) Population genetic models of duplicated genes. Genetica 137:19–37

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 50:228–236

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Salomonsen J, Flajnik MF (1994) Evolutionary conservation of MHC class I and class II molecules—different yet the same. Semin Immunol 6:411–424

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999a) Gene organization determines evolution of function in the chicken MHC. Immunol Rev 167:101–117

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Milne S, Göbel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S (1999b) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401:923–925

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

    PubMed  CAS  Google Scholar 

  • Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny H-J, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27:885–899

    Article  PubMed  CAS  Google Scholar 

  • Kosakovski Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096–3098

    Article  Google Scholar 

  • Lenz TL, Becker S (2008) Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci—implications for evolutionary analysis. Gene 427:117–123

    Article  PubMed  CAS  Google Scholar 

  • Lenz TL, Eizaguirre C, Becker S, Reusch TBH (2009) RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus. BMC Evol Biol 9:57

    Article  PubMed  Google Scholar 

  • Livant EJ, Brigati JR, Ewald SJ (2004) Diversity and locus specificity of chicken MHC B class I sequences. Anim Genet 35:18–27

    Article  PubMed  CAS  Google Scholar 

  • Longeri M, Zanotti M, Damiani G (2002) Recombinant DRB sequences produced by mismatch repair of heteroduplexes during cloning in Escherichia coli. Eur J Immunogenet 29:517–523

    Article  PubMed  CAS  Google Scholar 

  • McVean G, Auton A (2007) LDhat 2.1: a package for the population genetic analysis of recombination. Department of Statistics, Oxford University. http://www.stats.ox.ac.uk/∼mcvean/Ldhat/manual.pdf. Accessed 24 October 2010

  • Mesa CM, Thulien KJ, Moon DA, Veniamin SM, Magor KE (2004) The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics 56:192–203

    Article  PubMed  CAS  Google Scholar 

  • Miller MM, Goto R, Bernot A, Zoorob R, Auffray C, Bumstead N, Briles WE (1994) Two Mhc class I and two Mhc class II genes map to the chicken Rfp-Y system outside the B complex. Proc Natl Acad Sci USA 91:4397–4401

    Article  PubMed  CAS  Google Scholar 

  • Miller HC, Andrews-Cookson M, Daugherty CH (2007) Two patterns of variation among MHC class I loci in tuatara (Sphenodon punctatus). J Heredity 98:666–677

    Article  CAS  Google Scholar 

  • Mills JA (1989) Red-billed gull. In: Newton I (ed) Lifetime reproduction in birds. Academic Press Ltd., London, pp 387–404

    Google Scholar 

  • Moon DA, Veniamin SM, Parks-Dely JA, Magor KE (2005) The MHC of the duck (Anas platyrhynchos) contains five differentially expressed class I genes. J Immunol 175:6702–6712

    PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Noakes MA, Reimer T, Phillips RB (2003) Genotypic characterization of an MHC class II locus in lake trout (Salvelinus namaycush) from Lake Superior by single-stranded conformational polymorphism analysis and reference strand-mediated conformational analysis. Mar Biotechnol 5:270–278

    Article  PubMed  CAS  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    PubMed  CAS  Google Scholar 

  • Pratt BF, O’Connor DH, Lafont BAP, Mankowski JL, Fernandez CS, Triastuti R, Brooks AG, Kent SJ, Smith MZ (2006) MHC class I allele frequencies in pigtail macaques of diverse origin. Immunogenetics 58:995–1001

    Article  PubMed  CAS  Google Scholar 

  • Promerová M, Albrecht T, Bryja J (2009) Extremely high MHC class I variation in a population of a long-distance migrant, the scarlet rosefinch (Carpodacus erythrinus). Immunogenetics 61:451–461

    Article  PubMed  Google Scholar 

  • Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5:459–471

    Article  PubMed  CAS  Google Scholar 

  • Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 Å resolution. J Mol Biol 219:277–319

    Article  PubMed  CAS  Google Scholar 

  • Sawyer SA (1999) GENECONV: a computer package for the statistical detection of gene conversion. Department of Mathematics, Washington University in St. Louis. http://www.math.wustl.edu/∼sawyer/geneconv/gconvdoc.html. Accessed 24 October 2010

  • Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178:5744–5752

    PubMed  CAS  Google Scholar 

  • Shawar SM, Vyas JM, Rodgers JR, Rich RR (1994) Antigen presentation by major histocompatibility complex class I-b molecules. Annu Rev Immunol 12:839–880

    Article  PubMed  CAS  Google Scholar 

  • Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (quail and chicken) MHC regions. J Immunol 172:6751–6763

    PubMed  CAS  Google Scholar 

  • Shiina T, Hosomichi K, Hanzawa K (2006) Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 77:151–162

    Article  CAS  Google Scholar 

  • Shum BP, Rajalingam R, Magor KE, Azumi K, Carr WH, Dixon B, Stet RJM, Adkison MA, Hedrick RP, Parham P (1999) A divergent non-classical class I gene conserved in salmonids. Immunogenetics 49:479–490

    Article  PubMed  CAS  Google Scholar 

  • Skjødt K, Koch C, Crone M, Simonsen M (1985) Analysis of chickens for recombination within the MHC (B-complex). Tissue Antigens 25:278–282

    Article  PubMed  Google Scholar 

  • Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tao N, Richardson R, Bruno W, Kuiken C (2009) FindModel documentation. http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html. Accessed 24 October 2010

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • van den Elsen PJ, Gobin SJP, van Eggermond MCAJ, Peijnenburg A (1998) Regulation of MHC class I and II gene transcription: differences and similarities. Immunogenetics 48:208–221

    Article  PubMed  Google Scholar 

  • Watterson GA (1978) The homozygosity test of neutrality. Genetics 88:405–417

    PubMed  CAS  Google Scholar 

  • Westerdahl H (2007) Passerine MHC: genetic variation and disease resistance in the wild. J Ornithol 148:S469–S477

    Article  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542

    Article  PubMed  CAS  Google Scholar 

  • Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425

    Article  PubMed  CAS  Google Scholar 

  • Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 60:233–247

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pederson AMK (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kristen Choffe for her help in implementing the RSCA methodology, and three anonymous reviewers for their thoughtful comments regarding an earlier version of this manuscript. Funding was provided by a Marsden grant from the Royal Society of New Zealand (JAM and AJB), the Royal Ontario Museum Governors Fund and the Natural Sciences and Engineering Research Council of Canada (AJB), and a NSERC PGS-D scholarship (AC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Cloutier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1

Reference-strand conformation analysis. a PCRs are used to amplify a FLR allele and the same region from a test sample. PCR products are shown as double-stranded DNA molecules, with different colours indicating different alleles. A star symbol represents fluorescence incorporated into one FLR strand. b PCR products are pooled, denatured, and cooled to allow re-annealing of complementary strands. Heteroduplex DNA molecules show bulges in regions of nucleotide sequence mismatch. c Hybridized DNA is separated by polyacrylamide gel electrophoresis under nondenaturing conditions. Molecules containing labelled reference strands are visualized, with relative mobility shifts resulting from the retardation of fragments due to mismatch bulges. (PDF 120 kb)

Supplemental Fig. S2

Exon–intron organization of red-billed gull MHCI genes compared to other avian taxa. Note that no information is available for Lasc-UDA exon and intron 1. Exons are drawn as shaded boxes, and introns as connecting lines. Sequence sources: duck (A. platyrhynchos Anpl-UAA, AY885227), goose (Anser sp. isolate G5, AY387655), chicken (G. gallus BF2, AL023516), quail (C. japonica Coja-B1, AB078884), turkey (Meleagris gallopavo class I antigen alpha chain 2, DQ993255). (PDF 162 kb)

Supplemental Fig. S3

Example of RSCA screening, showing mobility shifts caused by hybridization with FLR-UAA*03 (left panes) and FLR-UAA*04 (right panes) for the same individual. a Simultaneous screening of MHCI loci. b Lasc-UCA gene-specific RSCA. c Lasc-UDA gene-specific RSCA. d RSCA of cloned alleles, with identities indicated beneath sample plots. Grey shading indicates sizing bins used in allele assignment. Arrows indicate an allele not isolated during initial cloning experiments that requires validation by gene-specific PCR assays and segregation analyses (subsequently established as allele UAA*02). (PDF 193 kb)

Supplemental Fig. S4

Sequence logos of predicted PBR residues. X-axis residue numbering corresponds to Fig. 2, and residues predicted to contact peptide mainchain atoms are marked with asterisks. (PDF 245 kb)

Supplemental Fig. S5

Inferred interlocus gene conversion in red-billed gull MHCI genes. Nucleotide sequences are shown aligned to a majority rule consensus sequence. Predicted gene conversion tracts with simulation p values <0.05 are boxed in red (UAA–UBA), blue (between UAA, UCA, and UDA), and green (UBA–UDA). Additional homogenized tracts with p > 0.05 are boxed in grey. (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloutier, A., Mills, J.A. & Baker, A.J. Characterization and locus-specific typing of MHC class I genes in the red-billed gull (Larus scopulinus) provides evidence for major, minor, and nonclassical loci. Immunogenetics 63, 377–394 (2011). https://doi.org/10.1007/s00251-011-0516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-011-0516-x

Keywords

Navigation