Skip to main content
Log in

Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus)

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Although the number of studies focusing on the major histocompatibility complex (MHC) in non-model vertebrates is increasing, results are often contradictory, and the structure of MHC is still poorly understood in wild species. Here, we describe the structure and diversity of exon 3 of MHC class I in a passerine bird, the Scarlet Rosefinch (Carpodacus erythrinus). Using capillary electrophoresis single-strand conformation polymorphism, we identified 82 different MHC class I variants in one Rosefinch population nesting at one site in the Czech Republic. Thus far, this is the highest intra-populational MHC class I variation observed in birds. We have not found support for ‘minimal essential’ MHC in this species since individuals exhibited between three and nine different exon 3 sequences, indicating that there may be at least five amplified MHC class I genes. By cloning, we obtained and analysed 29 exon sequences and found that all of them could be translated into potentially functional proteins. We also show that strong positive selection appears to be acting mainly, but not only, on previously described antigen-binding sites in MHC class I genes. Furthermore, our results indicate that recombination has played an important role in generating genetic diversity of these genes in the Scarlet Rosefinch; we discuss the significance of this extremely high genetic diversity in light of the life history traits of this species, such as long-distance migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pober JS (1994) Cellular and molecular immunology. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Aguilar A, Garza JC (2007) Patterns of historical balancing selection on the salmonid major histocompatibility complex class II beta gene. J Mol Evol 65:34–43. doi:10.1007/s00239-006-0222-8

    Article  PubMed  CAS  Google Scholar 

  • Albrecht T (2004) Edge effect in wetland-arable land boundary determines nesting success of scarlet rosefinches Carpodacus erythrinus in the Czech Republic. Auk 121:361–371. doi:10.1642/0004-8038(2004)121[0361:EEIWLB]2.0.CO;2

    Article  Google Scholar 

  • Albrecht T, Schnitzer J, Kreisinger J, Exnerová A, Bryja J, Munclinger P (2007) Extrapair paternity and the opportunity for sexual selection in long-distant migratory passerines. Behav Ecol 18:477–486. doi:10.1093/beheco/arm001

    Article  Google Scholar 

  • Alcaide M, Edwards SV, Negro JJ (2007) Characterization, polymorphism, and evolution of MHC Class II B genes in birds of prey. J Mol Evol 65:541–554. doi:10.1007/s00239-007-9033-9

    Article  PubMed  CAS  Google Scholar 

  • Amills M, Ramírez O, Tomás A, Obexer-Ruff G, Vidal O (2008) Positive selection on mammalian MHC-DQ genes revisited from a multispecies perspective. Genes Immun 9:651–658. doi:10.1038/gene.2008.62

    Article  PubMed  CAS  Google Scholar 

  • Anisimova M, Nielsen R, Yang Z (2003) Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics 164:1229–1236

    PubMed  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of human class I histocompatibility antigen, HLA-A2. Nature 329:506–512. doi:10.1038/329506a0

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud C, Sorci G, Morin V, Westerdahl H, Zoorob R, Wittzell H (2004) Diversity of MHC class I and IIB genes in house sparrows (Passer domesticus). Immunogenetics 55:855–865. doi:10.1007/s00251-004-0648-3

    Article  PubMed  CAS  Google Scholar 

  • Bonneaud C, Chastel O, Federici P, Westerdahl H, Sorci G (2006a) Complex MHC-based mate choice in a wild passerine. Proc R Soc 273:1111–1116. doi:10.1098/rspb.2005.3325

    Article  CAS  Google Scholar 

  • Bonneaud C, Pérez-Tris J, Federici P, Chastel O, Sorci G (2006b) Major histocompatibility alleles associated with local resistance to malaria in a passerine. Evolution Int J Org Evolution 60:383–389

    CAS  Google Scholar 

  • Bryja J, Galan M, Charbonnel N, Cosson J-F (2005) Analysis of major histocompatibility complex class II gene in water voles using capillary electrophoresis-single stranded conformation polymorphism. Mol Ecol Notes 5:173–176. doi:10.1111/j.1471-8286.2004.00855.x

    Article  CAS  Google Scholar 

  • Burri R, Niculita-Hirzel H, Roulin A, Fumagalli L (2008) Isolation and characterization of major histocompatibility complex (MHC) class II B genes in teh Barn owl (Aves: Tyto alba). Immunogenetics 60:543–550. doi:10.1007/s00251-008-0308-0

    Article  PubMed  CAS  Google Scholar 

  • Cramp S, Simmons KEL, Perrins CM (eds) (1977-1994) The birds of the Western Palearctic. Oxford University Press, Oxford

  • Edwards SV, Wakeland EK, Potts WK (1995) Contrasting histories of avian and mammalian MHC genes revealed by class II B genes of songbirds. Proc Natl Acad Sci U S A 92:12200–12204. doi:10.1073/pnas.92.26.12200

    Article  PubMed  CAS  Google Scholar 

  • Edwards SV, Chesnut K, Satta Y, Wakeland EK (1997) Ancestral polymorphism of Mhc Class II genes in mice: implications for balancing selection and the mammalian molecular clock. Genetics 146:655–668

    PubMed  CAS  Google Scholar 

  • Fitzpatrick S (1994) Colourful migratory birds: evidence for a mechanism other than parasite resistance for the maintenance of ‘good genes’ sexual selection. Proc R Soc Lond B Biol Sci 257:155–166. doi:10.1098/rspb.1994.0109

    Article  Google Scholar 

  • Freeman-Gallant CR, Johnson EM, Saponara F, Stanger M (2002) Variation at the major histocompatibility complex in Savannah sparrows. Mol Ecol 11:1125–1130. doi:10.1046/j.1365-294X.2002.01508.x

    Article  PubMed  CAS  Google Scholar 

  • Garrigan D, Edwards SV (1999) Polymorphism across an exon-intron boundary in an avian Mhc class II B gene. Mol Biol Evol 16:1599–1606

    PubMed  CAS  Google Scholar 

  • Goüy de Bellocq J, Charbonnel N, Morand S (2008) Coevolutionary relationship between helminth diversity and Mhc class II polymorphism in rodents. J Evol Biol 21:1144–1150. doi:10.1111/j.1420-9101.2008.01538.x

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analisis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hansson B, Richardson DS (2005) Genetic variation in two endangered Acrocephalus species compared to a widespread congener: estimates based on functional and random loci. Anim Conserv 8:83–90. doi:10.1017/S1367943004001878

    Article  Google Scholar 

  • Hess CM, Edwards SV (2002) The evolution of major histocompatibility genes in birds. Bioscience 52:423–431. doi:10.1641/0006-3568(2002)052[0423:TEOTMH]2.0.CO;2

    Article  Google Scholar 

  • Hess CM, Gasper J, Hoekstra H, Hill C, Edwards SV (2000) MHC class II pseudogene and genomic signature of a 32-kb cosmid in the House Finch (Carpodacus mexicanus). Genome Res 10:13–23. doi:10.1101/gr.10.5.613

    Article  Google Scholar 

  • Hosomichi K, Shiina T, Suzuki S, Tanaka M, Shimizu S, Iwamoto S, Hara H, Yoshida Y, Kulski JK, Inoko H, Hanzawa K (2006) The major histocompatibility complex (Mhc) class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken. BMC Genomics 7:322–335. doi:10.1186/1471-2164-7-322

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL, Yeager M (1998) Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet 32:415–435. doi:10.1146/annurev.genet.32.1.415

    Article  PubMed  CAS  Google Scholar 

  • Hughes CR, Miles S, Walbroehl JM (2008) Support for the minimal essential MHC hypothesis: a parrot with a single, highly polymorphic MHC class II B gene. Immunogenetics 60:219–231. doi:10.1007/s00251-008-0287-1

    Article  PubMed  CAS  Google Scholar 

  • Indovina P, Megiorni F, Fontemaggi G, Coni P, Mora B, Mazzilli MC (2001) Absence of in vivo DNA-Protein interactions in the DQA2 and DQB2 promoter regions. Hum Immunol 62:504–508. doi:10.1016/S0198-8859(01)00236-1

    Article  PubMed  CAS  Google Scholar 

  • Jarvi SI, Goto RM, Gee GF, Briles WE, Miller MM (1999) Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes. Am Genet Assoc 90:152–159

    CAS  Google Scholar 

  • Kaufman J (1999) Co-evolving genes in MHC haplotypes: the ‘rule’ for nonmammalian vertebrates? Immunogenetics 50:228–236. doi:10.1007/s002510050597

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Salamonsen J, Flajnik M (1994) Evolutionary conservation of MHC class I and class II molecules-different yet the same. Semin Immunol 6:411–424. doi:10.1006/smim.1994.1050

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Völk H, Wallny H (1995) A „minimal essential MHC“ and an „unrecognized MHC“: two extremes in selection for polymorphism. Immunol Rev 143:63–88. doi:10.1111/j.1600-065X.1995.tb00670.x

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Jacob J, Shaw I, Walker B, Milne S, Beck S, Salomonsen J (1999) Gene organisation determines evolution of function in the chicken MHC. Immunol Rev 167:101–117. doi:10.1111/j.1600-065X.1999.tb01385.x

    Article  PubMed  CAS  Google Scholar 

  • Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New York

    Google Scholar 

  • Klein J, Sato A, Nagl S, O'h Uigin C (1998) Molecular trans-species polymorphism. Annu Rev Ecol Syst 29:1–21. doi:10.1146/annurev.ecolsys.29.1.1

    Article  Google Scholar 

  • Koch M, Camp S, Collen T, Avila D, Salomonsen J, Wallny HJ, van Hateren A, Hunt L, Jacob JP, Johnston F, Marston DA, Shaw I, Dunbar PR, Cerundolo V, Jones EY, Kaufman J (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27:885–899. doi:10.1016/j.immuni.2007.11.007

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22:1208–1222. doi:10.1093/molbev/msi105

    Article  PubMed  CAS  Google Scholar 

  • Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. doi:10.1093/bioinformatics/bti079

    Article  CAS  Google Scholar 

  • Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 23:1891–1901. doi:10.1093/molbev/msl051

    Article  PubMed  Google Scholar 

  • Loiseau C, Zoorob R, Garnier S, Birard J, Federici P, Julliard R, Sorci G (2008) Antagonistic effects of a MHC class I allele on malaria-infected house sparrows. Ecol Lett 11:258–265. doi:10.1111/j.1461-0248.2007.01141.x

    Article  PubMed  Google Scholar 

  • Mesa CM, Thulien KJ, Moon DA, Veniamin SM, Magor KE (2004) The dominant MHC class I gene is adjacent to the polymorphic TAP2 gene in the duck, Anas platyrhynchos. Immunogenetics 56:192–203. doi:10.1007/s00251-004-0672-3

    Article  PubMed  CAS  Google Scholar 

  • Miller HC, Lambert DM (2004) Gene duplication and gene conversion in class II MHC genes of New Zealand robins (Petroicidae). Immunogenetics 56:178–191

    PubMed  CAS  Google Scholar 

  • Miller MM, Goto RM, Bernot A, Zoorob R, Auffray C, Bumstead N, Briles WE (1994) Two Mhc class I and two Mhc class II genes map to the chicken Rfp-Y system outside the B complex. Proc Natl Acad Sci U S A 91:4397–4401. doi:10.1073/pnas.91.10.4397

    Article  PubMed  CAS  Google Scholar 

  • Miller HC, Belov K, Daugherty CH (2006) MHC Class I genes in the Tuatara (Sphenodon spp.): evolution of the MHC in an ancient reptilian order. Mol Biol Evol 23:949–956. doi:10.1093/molbev/msj099

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Tris J, Bensch S (2005) Dispersal increases local transmission of avian malarial parasites. Ecol Lett 8:838–845. doi:10.1111/j.1461-0248.2005.00788.x

    Article  Google Scholar 

  • Poláková R, Vyskočilová M, Martin JF, Mays HL Jr, Hill GE, Bryja J, Schnitzer J, Albrecht T (2007) A multiplex set of microsatellite markers for the Scarlet Rosefinch (Carpodacus erythrinus). Mol Ecol Notes 7:1375–1378. doi:10.1111/j.1471-8286.2007.01892.x

    Article  CAS  Google Scholar 

  • Reusch TBH, Schaschl H, Wegner KM (2004) Recent duplication and inter-locus gene conversion in major histocompatibility class II-genes in a teleost, the three-spined stickleback. Immunogenetics 56:427–437. doi:10.1007/s00251-004-0704-z

    Article  PubMed  CAS  Google Scholar 

  • Richardson DS, Westerdahl H (2003) MHC diversity in two Acrocephalus sepcies: the outbred Great reed warbler and the inbred Seychelles warbler. Mol Ecol 12:3523–3529. doi:10.1046/j.1365-294X.2003.02005.x

    Article  PubMed  CAS  Google Scholar 

  • Richardson DS, Komdeur J, Burke T, von Schantz T (2004) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B Biol Sci 272:759–767. doi:10.1098/rspb.2004.3028

    Article  Google Scholar 

  • Shaw I, Powell TJ, Marston DA, Baker K, van Hateren A, Riegert P, Wiles MV, Milne S, Beck S, Kaufman J (2007) Different evolutionary histories of the two classical class I genes BF1 and BF2 illustrate drift and selection within the stable MHC haplotypes of chickens. J Immunol 178:5744–5752

    PubMed  CAS  Google Scholar 

  • Shiina T, Shimizu S, Hosomichi K, Kohara S, Watanabe S, Hanzawa K, Beck S, Kulski JK, Inoko H (2004) Comparative genomic analysis of two avian (Quail and Chicken) MHC regions. J Immunol 172:6751–6763

    PubMed  CAS  Google Scholar 

  • Shiina T, Hosomichi K, Hanzawa K (2006) Comparative genomics of the poultry major histocompatibility complex. Anim Sci J 77:151–162. doi:10.1111/j.1740-0929.2006.00333.x

    Article  CAS  Google Scholar 

  • Shum BP, Rajalingam R, Magor KE, Azumi K, Carr WH, Dixon B, Stet RJ, Adkison MA, Hedrick RP, Parham P (1999) A divergent non-classical class I gene conserved in salmonids. Immunogenetics 49:479–490. doi:10.1007/s002510050524

    Article  PubMed  CAS  Google Scholar 

  • Spottiswoode C, Møller AP (2004) Extra-pair paternity, migration and breeding synchrony in birds. Behav Ecol 15:41–57

    Article  Google Scholar 

  • Strand T, Westerdahl H, Höglund J, Alatalo RV, Siitari H (2007) The Mhc class II of the Black grouse (Tetrao tetrix) consists of low numbers of B and Y genes with variable diversity and expression. Immunogenetics 59:725–734. doi:10.1007/s00251-007-0234-6

    Article  PubMed  CAS  Google Scholar 

  • van Oosterhout C, Joyce DA, Cummings SM (2006) Evolution of MHC class IIB in the genome of wild and ornamental guppies, Poecilia reticulata. Heredity 97:111–118. doi:10.1038/sj.hdy.6800843

    Article  PubMed  CAS  Google Scholar 

  • Wallny H, Avila D, Hunt L, Powell T, Riegert P, Salomonsen J, Skjodt K, Vainio O, Vilbois F, Wiles M, Kaufman J (2006) Peptide motifs of the single dominantly expressed class I molecule explain the striking MHC-determined response to Rous sarcoma virus in chicken. Proc Natl Acad Sci U S A 103:1434–1439. doi:10.1073/pnas.0507386103

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T (1999) Polymorphism and transcription of MHC class I genes in a passerine bird, the great reed warbler. Immunogenetics 49:158–170. doi:10.1007/s002510050477

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Witzel H, von Schantz T (2000) MHC diversity in two passerine birds: no evidence for a minimal essential MHC. Immunogenetics 52:92–100. doi:10.1007/s002510000256

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Wittzell H, von Schantz T, Bensch S (2004) MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE. Heredity 92:534–542. doi:10.1038/sj.hdy.6800450

    Article  PubMed  CAS  Google Scholar 

  • Westerdahl H, Waldenström J, Hansson B, Hasselquist D, von Schantz T, Bensch S (2005) Associations between malaria and MHC genes in a migratory songbird. Proc R Soc Lond B Biol Sci 272:1511–1518. doi:10.1098/rspb.2005.3113

    Article  CAS  Google Scholar 

  • Wilson DJ, McVean G (2006) Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:1411–1425. doi:10.1534/genetics.105.044917

    Article  PubMed  CAS  Google Scholar 

  • Wittzell H, Bernot A, Auffray C, Zoorob R (1999a) Concerted evolution of two Mhc class II B loci in pheasants and domestic chicken. Mol Biol Evol 16:479–490

    PubMed  CAS  Google Scholar 

  • Wittzell H, Madsen T, Westerdahl H, Shine R, von Schantz T (1999b) MHC variation in birds and reptiles. Genetica 104:301–309. doi:10.1023/A:1026421607089

    Article  CAS  Google Scholar 

  • Worley K, Gillingham M, Jensen P, Kennedy LJ, Pizzari T, Kaufman J, Richardson DS (2008) Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 60:233–247. doi:10.1007/s00251-008-0288-0

    Article  PubMed  CAS  Google Scholar 

  • Xia C, Hu T, Yang T, Wang L, Xu G, Lin C (2005) cDNA cloning, genomic structure and expression analysis of the goose (Anser cygnoides) MHC class I gene. Vet Immunol Immunopathol 107:291–302. doi:10.1016/j.vetimm.2005.05.005

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Swanson WJ, Vacquier VD (2000) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17:1446–1455

    PubMed  CAS  Google Scholar 

  • Yang Z, Wong WSW, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22:1107–1118. doi:10.1093/molbev/msi097

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pavel Munclinger, Michal Vinkler, Jan Schnitzer and Radka Poláková, for their help in the field. Thanks to Anna Bryjová and Dagmar Čížková for their valuable advice in the laboratory. We are very grateful to Heidi C. Hauffe for improving the English and two anonymous referees for critical comments on the manuscript. This study was funded by the Grant Agency of the Academy of Sciences of the Czech Republic (project no. IAA600930608), the Grant Agency of the Czech Rep. (project no. 206/06/0851) and by the Ministry of Education of the Czech Rep., whose Research Centre no. LC06073 and Long-term Research Plan (no. MSM 0021620828) to the Charles University in Prague formed a framework for a part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Promerová.

Additional information

The sequence data described in this paper are accessible in GenBank data library under accession numbers FJ392762–FJ392790.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Promerová, M., Albrecht, T. & Bryja, J. Extremely high MHC class I variation in a population of a long-distance migrant, the Scarlet Rosefinch (Carpodacus erythrinus). Immunogenetics 61, 451–461 (2009). https://doi.org/10.1007/s00251-009-0375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-009-0375-x

Keywords

Navigation